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Abstract

Surface electromyography (sEMG) is an attractive and eas-
ily available signal for decoding hand movement, yet models
that map sEMG to fine-grained hand pose often struggle
to generalize across users, electrode placements, and task
contexts. We propose a two-stage model that first learns a
tokenized representation of hand kinematics through a VQ-
VAE, and subsequently maps EMG signals to the learned
hand movement tokens. Evaluated on the emg2pose bench-
mark – 16-channel sEMG at 2 kHz synchronized with 60 Hz
joint angles – our approach improves over strong regression
baselines and generalizes better on cross-task and cross-user
settings, measured by mean absolute joint angle error and
fingertip landmark distance. These results were evaluated
on a subset of the original dataset, which included 12 sub-
jects and 27 movement repertoires. On the held-out user set,
our model, VQ-MyoPose, achieves 10.2° MAE and 14.7mm
fingertip error, outperforming vemg2pose (12.2°, 15.8mm).
Discrete tokens exhibit concentrated codebook usage and
correlations with task structure, offering interpretability and
compression. These results support movement tokenization
as a compact, transferable intermediate for estimating hand
kinematics from sEMG signals.

1. Introduction

Decoding hand movement from sEMG opens significant new
possibilities for multiple fields, such as human-computer
interfaces for virtual environments [4, 12], robust control
for prosthetics [3], and movement neuroscience [5]. How-
ever, consistently decoding hand movement across differ-
ent gestures (cross-task) and building interfaces that adapt
to novel users (cross-user generalization) remains difficult:
anatomy, electrode placement, and task context alter the
mapping from muscle activity to hand movement. Previous
work relies largely on end-to-end regression of continuous

Figure 1. VQ-MyoPose: From EMG to discrete movement to-
kens. Surface electromyography (sEMG) recorded at the wrist is
mapped to discrete latent codes drawn from a learned codebook
of movement tokens. By predicting these codes, rather than con-
tinuous trajectories directly, the model provides a compact and
interpretable representation of hand pose.

hand kinematics (e.g., joint angles, positions, or velocities)
[8, 13, 15, 16]. While effective, such models often lack in-
terpretability and may fail to capture recurring structure in
movement that might aid generalization.

An alternative is to learn discrete latent representations of
movement, in line with neuroscience theories of ‘movement
primitives’ [6, 18], where dexterous behaviours are thought
to be composed of a finite set of recurring movement motifs.
To achieve this, we employ Vector-Quantized Variational
Autoencoders (VQ-VAE) [11], which have shown remark-
able success in speech, vision, and control tasks in mapping
high-dimensional signals into sequence of tokens that cap-
ture recurring motifs. Such a learned codebook of movement
tokens provides a novel inductive bias that (i) improves cross-
task and cross-user generalisation by reusing shared tokens,
(ii) provide a transferable intermediate representation for de-
coding hand kinematics from EMG, and (iii) yields a more
interpretable model of EMG to movement decoding.

2. Background and related work

The task of decoding hand kinematics has traditionally re-
ceived attention in computer vision and propelled by remark-



able progress in motion capture and hand modelling [2].
However, performance often degrades under occlusion, lim-
ited field-of-view, or poor lighting [9]. By contrast, sEMG
offers an ever present modality that directly measures the
electrical activity of muscles that drives movement in a wear-
able form factor, making it an attractive complementary
modality for robust hand tracking [7, 13].

The main task is to learn a mapping from raw sEMG sig-
nals to continuous hand kinematics. Formally, given input
sequences X ∈ RC×T where C the number of sEMG chan-
nels, and T the temporal window length, the objective is to
predict corresponding hand kinematics Y ∈ RJ×T , where
J denotes the degrees of freedom of the hand model. This
problem is highly non-linear and underdetermined: sEMG
encodes muscle activations, which relate more closely to
motion derivatives than to static pose [8, 14]. As a result,
effective solutions must exploit temporal context and gen-
eralize across users and recording conditions. Recent base-
lines such as vemg2pose [13] and NeuroPose [8] have intro-
duced distinct neural architectures to address this challenge:
vemg2pose employs a time-depth separable convolutional
encoder and autoregressive LSTM decoder to estimate joint
angular velocities, while NeuroPose leverages a U-Net-style
architecture to directly regress joint angles. While these
models provide competitive baselines, generalizing from
noisy, user-specific signals remains a core challenge.

We base our study on the emg2pose dataset [13], the
largest publicly available benchmark for hand pose estima-
tion from sEMG. The dataset contains wrist-based record-
ings from a 16-channel bipolar sEMG device sampled at
2 kHz, alongside synchronized 3D hand joint angle labels
captured with a 26-camera motion capture system. In total,
it spans 193 users, 370 hours, and 29 kinematic ‘stages’ (i.e.
groups of specific types of gestures) comprising over 80M
labeled frames, a scale comparable to leading vision-based
hand pose datasets. The collection protocol introduces vari-
ability across three main axes: (i) user anatomy, (ii) sensor
placement, and (iii) movement repertoire (gestures within
each stage).

The scale and diversity of emg2pose make it ideally suited
to explore modern self-supervised and discrete representa-
tion learning methods such as VQ-VAE [11], which have
demonstrated success in speech [1] and vision domains
[17, 19]. Hence, our goal is to learn a compact and trans-
ferable tokenized motion representations that disentangle
user-specific variability and improve downstream EMG-to-
pose decoding.

3. Methods
Our approach consists of two complementary stages that
jointly enable discrete representation learning from hand
kinematics and subsequent decoding from surface elec-
tromyography (sEMG). The overall pipeline is illustrated in

Figure 2. Overview of the two-stage architecture of VQ-
MyoPose. Stage A (top): A VQ-VAE is trained on ground-
truth joint angle trajectories Y ∈ RJ×T (J = 20, joints angles,
T = 2000, window size) to tokenize movement into a sequence
of discrete latent codes. Stage B (bottom): An EMG encoder pro-
cesses input signals X ∈ RC×T (C = 16, EMG channels) and
uses Gumbel-Softmax sampling to predict code indices î. These
indices select quantized embeddings ẑq from the frozen codebook
of Stage A, which are passed through the frozen decoder to recon-
struct joint angles.

Fig. 2.
VQ-VAE for Joint Angle Tokenization. In the first stage,
we trained a VQ-VAE [11] on ground-truth joint angle tra-
jectories x ∈ R20×T . This module compressed motion se-
quences into a sequence of discrete latent variables, i.e.,
movement tokens, drawn from a learned codebook. To
exploit structural correlations between channels and the
natural configuration of the hand, we reshaped inputs to
x(3D) ∈ R5×4×T . An encoder comprising stacked 2D con-
volutions maps x(3D) to latent features ẑq ∈ RD×H×W ,
with strides restricted to the temporal axis to prevent down-
sampling in height (as per the final configuration, D =
10, H = 5,W = 200). A vector quantizer mapped each
spatial position in ze to the nearest codeword of a learnable
codebook E ∈ RK×D, where K = 128 is the size of the
codebook and D = 10 is the size of each codebook vector.

The quantized latents zq were used in place of ze and
optimized with a composite quantization loss:

LVQ = ∥zq − sg[ze]∥22︸ ︷︷ ︸
codebook loss

+β ∥ze − sg[zq]∥22︸ ︷︷ ︸
commitment loss

+ λsmooth
(
∥∆W zq∥22 + ∥∆Hzq∥22

)
− λusage

H(p)
logK︸ ︷︷ ︸

regularizers

.

(1)
where sg[·] denotes the stop-gradient operator, ∆ are finite
differences along temporal and spatial axes, and H(p) is
the entropy of code usage. This loss encourages accurate



reconstruction, encoder commitment, spatial smoothness
across tokens, and uniform codebook utilization.

A decoder mirrored the encoder with upsampling blocks
that expand only along the temporal axis. Reconstructed
tensors x̂(3D) ∈ R5×4×T were reshaped back to R20×T . Fi-
nally, a 1× 1 convolutional “mixing” layer implemented a
learnable permutation/sign/scale transformation across the
20 channels. Finally, the total loss combined the reconstruc-
tion loss (L1 error) calculated on the decoder output and the
quantization loss (1):

Ltotal = λreconLrecon + LVQ (2)

EMG to Latent Predictor In the second stage, we mapped
multi-channel sEMG windows to discrete latent code indices
(for a fixed VQ-VAE codebook of size K) with a CNN–RNN
sequence classifier. Let x ∈ RC×T be a batch of sEMG
segments (C = 16 channels, T = 2000 samples).

A 1-D convolutional feature encoder processed x with
stacked Conv1d layers (kernel/padding/stride: (10, 5, 3),
(6, 2, 2), (4, 1, 1), (3, 0, 1)), each followed by BatchNorm,
LeakyReLU, and dropout (p = 0.2). This stage can ex-
tract localized myoelectric patterns while reducing temporal
resolution in a manner aligned with the Stage A VQ-VAE
encoder.

The resulting features were passed to a bidirectional GRU
and to a 1D convolution with kernel size 31 that acts as an
alignment filter, initialized as identity but trainable to re-
fine local timing. Finally, a linear projection mapped each
time step to H × K logits, reshaped into (H,W,K) and
flattened to (L,K) with L = HW . These logits were con-
verted to quantized embeddings ẑq using Gumbel-softmax
sampling against the frozen codebook E ∈ RK×D from
Stage A. Hence, at each training step, the frozen pose VQ-
VAE produced target code indices i ∈ [K]HW and quantized
latents zqtgt ∈ RD×H×W from ground-truth joint angles. A
cross-entropy loss supervises token prediction:

Llatent = CEϵ

(
ℓ, itgt

)
,

with smoothing ϵ = 0.05. In addition, the predicted embed-
dings ẑq were decoded through the frozen VQ-VAE decoder
to produce x̂, resulting in a reconstruction loss

Lrecon = ∥x̂− xtgt∥22.

The final training objective is a weighted combination using
λlatent = 1.0 and λrecon = 0.5

Ltotal = λlatentLlatent + λreconLrecon. (3)

Together, these two stages factorized the sEMG-to-pose
inference task into: (i) learning a discrete and interpretable
representation of hand motion, and (ii) learning to map noisy
muscle activity to this stable latent space. This modular

design leverages the strengths of VQ-based representation
learning in an attempt to simplify the research problem of
joint pose regression from EMG data through the dimension-
ality reduction of the joint space.

Training setup We trained both models using a batch size
of 128 and using 1 second of non-overlapping trajectories.
The employed dataset was a subset of the emg2pose dataset
and included 12 subjects and 27 stages, which was then
divided into training, validation, and test sets with a split
of 70%, 15%, and 15%. The training was carried out on a
NVIDIA GeForce GTX 1080 Ti GPU for 50 epochs.

4. Results

Before evaluating EMG-driven prediction, we first assess the
reconstruction performance of the VQ-VAE when trained
directly on joint angle trajectories (Stage A). The VQ-VAE
achieves joint angle errors of 7.1 ± 0.7◦, 6.7 ± 0.7◦, and
6.9 ± 1.1◦ for the User, Stage, and User+Stage splits, re-
spectively, while fingertip landmark errors remain below a
centimeter for User (8.3±0.8mm) and Stage (7.8±0.7mm),
and rise to 13.3± 2.2mm in the combined User+Stage set-
ting. These results confirm that the VQ-VAE can tokenize
motion into a compact codebook while maintaining accurate
reconstructions across all generalization regimes. This base-
line therefore establishes a strong lower bound on achievable
MAE, demonstrating that the learned codebook is expressive
enough to capture and compose complex hand movements,
motivating its use as an intermediate representation for EMG-
to-pose decoding.

We next evaluate our full two-stage pipeline, where the
EMG encoder predicts discrete tokens from wrist sEMG
and the frozen VQ-VAE decoder reconstructs hand kine-
matics. Compared to vemg2pose [13], our approach brings
clear gains in the most challenging generalization settings.
On held-out User, VQ-MyoPose reduces joint angle error
from 12.2± 1.3◦ to 10.2± 1.1◦ and fingertip distance from
15.8± 1.9mm to 14.7± 2.4mm, corresponding to a relative
improvement of ∼16% in angle MAE and ∼7% in fingertip
accuracy. On the combined User+Stage split, errors drop
from 15.8 ± 1.4◦ to 14.6 ± 0.7◦ and from 21.6 ± 2.0mm
to 18.8 ± 0.9mm, a gain of ∼8% and ∼13%, respec-
tively. Performance degrades on the Stage split (21.9± 3.7◦,
27.2 ± 2.6mm), reflecting the difficulty of generalizing
across unseen kinematic conditions without user change,
a known limitation of EMG-based decoding. Overall, these
results show that tokenizing hand motion with a VQ-VAE
provides a more stable latent target than direct regression, es-
pecially improving generalization across users and combined
user+stage regimes.



Figure 3. VQ-MyoPose predictions (pink) vs. ground truth (gray)
hand poses for a ‘finger counting’ task.

Table 1. Angle error (MAE, in degrees) under different generaliza-
tion splits.

Method User Stage User,Stage

vemg2pose [13] 12.2 ± 1.3 15.2 ± 1.6 15.8 ± 1.4
VQ-MyoPose (ours) 10.2 ± 1.1 21.9 ± 3.7 14.6 ± 0.7

Table 2. Fingertip landmark distance (mm) under different general-
ization splits.

Method User Stage User,Stage

vemg2pose [13] 15.8 ± 1.9 20.4 ± 2.2 21.6 ± 2.0
VQ-MyoPose (ours) 14.7 ± 2.4 27.2 ± 2.6 18.8 ± 0.9

Codebook analysis The learned codebook exhibits healthy
utilization and diversity. In particular, codebook usage is
high (81.07%), and the elements are well separated as the
mean off-diagonal similarity is only 0.0128, indicating near-
orthogonality between codes. Codebook assignments are
reasonably dispersed across entries, as suggested by the
row-wise mean entropy of 4.7341, and the spectral decay
of 0.4230 hints that the codes capture mixed-scale structure
rather than collapsing to a narrow frequency band. However,
there is still room for improvement: the local smoothness
score (−0.0374) and a modest silhouette at k=10 (0.2437)
suggest that temporal transitions between tokens could be
smoother and clusters more separable.

5. Limitations

While our approach demonstrates promising improvements,
several limitations remain. First, residual variability aris-
ing from user anatomy and electrode placement indicates
the need for personalization strategies or domain adaptation
techniques. Second, the current model architecture is rela-
tively simple, leaving substantial room for methodological
advancement. Finally, our experiments were conducted on
a restricted subset of the emg2pose dataset; more definitive
results will require training and evaluation at the full scale
of the benchmark.

6. Conclusion
In this work, we presented a two-stage framework for de-
coding hand kinematics from wrist sEMG signals using dis-
crete latent representations. By first training a VQ-VAE
[11] to tokenize joint angle trajectories into discrete latent
representations and then learning an EMG-to-latent predic-
tor aligned to this discrete codebook, we demonstrated that
sEMG-driven pose estimation can benefit from movement-
related intermediate representations. Evaluated on a subset
of the large-scale emg2pose benchmark [13], our approach
achieves improved generalization compared to strong regres-
sion baselines, particularly under cross-user and cross-stage
conditions.

Beyond performance, the use of discrete tokens offers
interpretability, compression, and the possibility of apply-
ing sequence modeling techniques developed in speech and
vision domains (e.g., CPC [10], vq-wav2vec [1]). These find-
ings support the idea that discrete representation learning
can serve as a robust interface for biosignal-driven control,
spanning prosthetics, teleoperation, and immersive virtual
environments. Future work will extend this approach with
multimodal fusion (e.g., RGB-D, force sensing) over the
learned code sequences.
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