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Abstract

Current approaches to pose generation rely heavily
on intermediate representations, either through two-stage
pipelines with quantization or autoregressive models that
accumulate errors during inference. This fundamental limi-
tation leads to degraded performance, particularly in long-
term pose generation where maintaining temporal coher-
ence is crucial. We propose a novel one-stage architec-
ture that directly generates poses in continuous coordinate
space from minimal context - a single RGB image and text
description - while maintaining consistent distributions be-
tween training and inference. Our key innovation is elim-
inating the need for intermediate representations or token-
based generation by operating directly on pose coordinates
through a relative movement prediction mechanism that
preserves spatial relationships, and a unified placeholder
token approach that enables single-forward generation with
identical behavior during training and inference. Through
extensive experiments on Penn Action and First-Person
Hand Action Benchmark (F-PHAB) datasets, we demon-
strate that our approach significantly outperforms existing
quantization-based and autoregressive methods, especially
in long-term generation scenarios.

1. Introduction
Human pose generation has emerged as a fundamental
problem in computer vision, with applications spanning an-
imation synthesis, action understanding, and motion pre-
diction [4, 10, 16]. Recent work has explored various ap-
proaches to control this generation process using different
modalities: from textual descriptions [1, 11], to audio sig-
nals [9, 13], to scene context [3, 18].

Creating semantically meaningful and contextually ap-
propriate poses remains challenging, particularly due to ar-
chitectural limitations in existing approaches. These ap-
proaches typically fall into two restrictive paradigms. First,
they rely on autoregressive models that generate poses
frame-by-frame which injects a distribution shift between
training and inference due to their nature [2]. This distribu-
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Figure 1. Examples of pose generation from a single RGB image
and text description.

tion shift then leads to degraded long-term performance due
to accumulated performance [6], as we show later in this
paper. Second, they are two-stage approaches that first con-
vert continuous pose coordinates into discrete tokens, latent
codes through VAEs [15, 16] or quantization before gener-
ation [11], introducing information loss and computational
overhead.

These approaches show significant degradation when
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Figure 2. Long-term forecasting errors in existing methods: red in-
dicates ground truth, blue indicates predictions. Errors accumulate
due to autoregressive training. Top: LSTM; Bottom: Transformer.

generating longer sequences, as both quantization errors
and distribution shifts compound over time (as demon-
strated in Figure 2). This degradation affects many down-
stream applications (e.g., in task guidance where long-term
semantic coherence is crucial [5, 17]). Additionally, most of
these methods require complex inputs like 3D scene infor-
mation [19, 20], assuming the availability of such detailed
data, which limits their practicality in broad real-world ap-
plications.

To address these fundamental limitations in pose gener-
ation, we introduce two key novelties within our approach:
1. A unified prediction mechanism that ensures consistent

distributions between training and inference, enabling
reliable long-term generation.

2. A one-stage pose generation architecture that directly
operates in continuous coordinate space from mini-
mal input—a single RGB image and text description—
preserving both spatial fidelity and semantic alignment,
without relying on scarce 3D detailed scene information.
We also explore how language guidance can provide se-

mantic control over the generated motions. Natural lan-
guage offers an intuitive and flexible way to specify desired
movements. We leverage short and concise natural lan-
guage descriptions rather than the detailed movement spec-
ifications required by prior work [7, 12]. This enables ef-
fective control without requiring complex movement spec-
ifications or detailed scene understanding. This combina-
tion of robust long-term generation with language control
facilitates applications from animation synthesis to motion
planning and task-guidance.

We evaluate the effectiveness of our method on Penn
Action [22] and First-Person Hand Action Benchmark (F-
PHAB) [8] datasets across body and hand pose, viewpoints
and domains. With four metrics measuring performance,
we benchmark against five strong baselines. Our approach
consistently outperforms baselines, achieving significant
gains in both short-term and long-term pose generation. No-
tably, our method excels in challenging scenarios involving
large motions and complex temporal dynamics. Ablation
studies and qualitative results demonstrate the integration
of visual and textual context, along with our architecture
design choices, are crucial.

2. Approach

2.1. Problem Statement
Given a natural language prompt and a single RGB image
I ∈ ZH×W×3, our goal is to predict a sequence of k fu-
ture poses P = {Pi}ki=1 that aligns semantically with the
prompt and visually with the scene. Each pose Pi ∈ R2N

represents 2D coordinates of N keypoints. Unlike prior
work requiring 3D scene data [20], we operate directly in
the continuous coordinate space.

2.2. Method
Our one-stage architecture predicts future poses in contin-
uous space from multimodal input. A vision-language en-
coder extracts features: the image I is processed by fI to
yield FI ∈ RNI×dI ; the prompt L is passed through fM for
fused features FM ∈ RNM×dM . A Transformer decoder,
conditioned on the initial pose P0, forecasts future poses.

Training-Inference Alignment We avoid autoregressive
drift by predicting all future poses jointly using non-masked
self-attention and placeholder tokens [PRD]. Unlike next-
token prediction (NTP) methods [11] prone to accumulat-
ing error, our decoder input aligns training and inference
distributions:

Xours =


x0
1 y01 · · · x0

N y0N
[PRD]1 · · · · · · · · · [PRD]2N

...
. . . . . . . . .

...
[PRD]1 · · · · · · · · · [PRD]2N

 (1)

The decoder maps (P0, FM ) to P̂ ∈ RT×2N with a sin-
gle forward pass:

P̂ = Decoder(P0, FM ) (2)

Relative Pose Forecasting Instead of predicting absolute
coordinates, we forecast displacements from P0, e.g., pre-
dicting (∆x = −0.05,∆y = 0.1) from (0.75, 0.8) to
(0.7, 0.9). This promotes spatial coherence and reduces
global redundancy.

Vision-Language Encoding Compact prompts (e.g.,
“swing golf”) are encoded with BLIP [14]. fI is the frozen
image encoder; fM is BLIP’s image-grounded text encoder
that fuses L and I .

2.3. Relative Pose Representation Loss
To model joint spatial structure, we define pairwise distance
and direction matrices between joints.
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Figure 3. Overview of our proposed method. Given a single RGB image I and a natural language action description L, our model extracts
vision-language fused features using a multimodal encoder. These features, along with the initial pose P0, are fed into a Transformer
decoder, which predicts a sequence of future poses P̂1...T . Our method employs cross-attention to capture the interaction between the
visual and textual inputs, ensuring that the forecasted poses align with the provided context.

Distance Representation

Dij =
√
(xi − xj)2 + (yi − yj)2 (3)

Direction Representation

Θij =

(
xj − xi

Dij
,
yj − yi
Dij

)
(4)

Loss Formulation

Ldistance =
∑
i,j

|DGT,ij −DPred,ij | (5)

Ldirection =
∑
i,j

∥ΘGT,ij −ΘPred,ij∥2 (6)

Lpose = αLdistance + βLdirection (7)

Lseq =
1

k

k∑
i=1

Lpose (8)

Lbatch =
1

B

B∑
i=1

Lseq,i (9)

L = Lrel(α, β) + θLbatch,mse (10)

3. Experiments
We validate our model on two pose forecasting benchmarks
and compare it against strong baselines using four standard
metrics. This section details the datasets, evaluation met-
rics, implementation, baselines, and results, including abla-
tions and comparisons with prior work.

3.1. Datasets
We use Penn Action [22] for full-body pose and F-
PHAB [8] for hand pose in egocentric views. Each dataset
contains short natural language descriptions paired with
videos. For missing annotations, we apply MediaPipe to
extract pseudo-labels. Training uses 90% of the videos, and
testing uses 10%. The forecasting horizon is 45 frames.

3.2. Metrics
We use:
• ADE: Average distance over predicted keypoints and

frames.
• FDE: Distance at the last timestamp.
• PCK: Percentage of keypoints within a threshold (0.05

for body, 0.15 for hand).
• RMSE: Root mean squared error.

3.3. Implementation Details
BLIP is used for vision-language fusion (ViT-g/14 +
BERT). We freeze BLIP and train the Transformer decoder
using AdamW (lr 10−4, batch 64) on one NVIDIA H100.
The loss uses a mix of MSE and relative pose losses with
weights α=1.0, β=1.0, and θ=0.1.

3.4. Baselines
We evaluate against:
• NNP: Nearest neighbor by input pose.
• NNVL: Nearest neighbor by fused features.
• LSTM: Autoregressive model with next-token predic-

tion.
• Transformer (NTP): Transformer decoder with causal

masking.
• Quant.+TF: Two-stage approach with pose quantization

and Transformer decoding.



Penn Action F-PHAB

Method ADE↓ FDE↓ PCK↑ RMSE↓ ADE↓ FDE↓ PCK↑ RMSE↓
NNP 0.090 0.105 0.666 0.057 0.168 0.154 0.377 0.109
NNVL 0.242 0.246 0.300 0.157 0.258 0.259 0.279 0.214
LSTM 0.164 0.262 0.382 0.106 0.194 0.194 0.302 0.136
Transformer (NTP) 0.173 0.230 0.344 0.111 0.192 0.203 0.300 0.146
Quant.+TF 0.255 0.248 0.180 0.166 0.243 0.239 0.208 0.160
Ours 0.058 0.077 0.818 0.035 0.097 0.086 0.765 0.068

Table 1. Comparison with baseline models on both datasets.
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Ours

Figure 4. Performance across timestamps. Our model is robust to longer horizons.

ADE↓ FDE↓ PCK↑ RMSE↓
NNP 0.112 0.165 0.549 0.070
NNVL 0.225 0.258 0.181 0.145
LSTM 0.174 0.289 0.316 0.112
Transformer 0.168 0.255 0.327 0.108
Quant.+TF 0.247 0.256 0.124 0.159
Ours 0.092 0.157 0.682 0.057

Table 2. Results on the hardest 10% test samples (Penn Action).

Variant ADE↓ FDE↓ PCK↑ RMSE↓
TF (NTP) 0.173 0.230 0.344 0.111
+ pose det. 0.125 0.155 0.441 0.098
+ full attn. 0.069 0.069 0.774 0.043
+ causal mask 0.060 0.074 0.820 0.037
+ rel. loss (ours) 0.058 0.077 0.818 0.035

Table 3. Ablation study on Penn Action.

3.5. Results

Main (Tab. 1) Our model clearly outperforms all baselines
in both datasets and across all metrics. Autoregressive mod-
els degrade due to error accumulation. Quant.+TF suffers
from codebook limitations. Our model avoids both and de-
livers accurate predictions in one forward pass.
Timestamp and Hard Sample Analysis Figure 4 shows
performance over time. Our accuracy remains stable while

Method ADE↓ FDE↓ PCK↑ RMSE↓
TM2T [11] 0.268 0.292 0.171 0.271
PHD [21] – – 0.772 –
Ours 0.017 0.017 0.860 0.012

Table 4. Comparison with SOTA single-modality methods on
Penn Action.

others degrade. In Tab. 2, we also evaluate on the hardest
10% samples (by keypoint motion variance):
Ablation Study Each design choice improves performance,
particularly the transition to single-stage decoding and use
of relative geometry loss.
Comparison with SOTA (Tab. 4) Despite using only one
RGB frame and short text, our method outperforms both
state-of-the-art text-only and vision-only pose generation
models.

4. Conclusion
We introduce a one-stage, vision-language-guided pose
forecaster that operates in continuous coordinate space
and, by aligning training and inference through relative-
movement prediction, produces spatially faithful sequences.
Extensive experiments on Penn Action and F-PHAB
demonstrate state-of-the-art performance across multiple
metrics, clearly surpassing strong baselines. Moreover, the
model remains robust under large motions and long fore-
casting horizons.
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