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Abstract

Editing objects in hand-object interaction scenes in an ego-
centric view is challenging, as it requires precise localiza-
tion of the target object while preserving the surrounding
context, under frequent hand occlusions and dynamic cam-
era perspectives. Existing inpainting approaches often de-
pend on manual masks or coarse bounding boxes, leading
to inaccurate boundaries and visual artifacts. In this work,
we introduce a text-guided object replacement framework,
Replace-in-Ego, which integrates a vision-language model
(VLM)-based segmentation model with a diffusion trans-
former (DiT). Given target, reference images and the cor-
responding descriptive texts, our method predicts segmen-
tation masks for the specified objects and applies them to
create masked target and reference images. The masked
images are merged to encode both target scene context
and reference object appearance and served as a joint rep-
resentation, which conditions DiT to generate a realistic
replacement in the target scene. Experiments on TACO
dataset demonstrate our approach achieves high-quality re-
construction in egocentric hand–object interaction scenar-
ios, producing sharper boundaries, coherent object place-
ments, and visually realistic integration.

1. Introduction
Accurately editing objects in egocentric hand–object inter-
action scenes is an essential capability for applications such
as augmented and virtual reality, human–robot collabora-
tion, and immersive media content creation. A common
requirement in these scenarios is to replace a specific ob-
ject while keeping the rest of the scene intact. Conventional
inpainting methods [2, 9, 12, 19] often depend on manu-
ally drawn annotations like bounding boxes or pixel-wise
masks, which are labor-intensive and prone to inaccura-
cies. In particular, approaches that rely solely on bound-
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ing boxes frequently produce artifacts and imprecise object
boundaries after editing. These challenges are even more
pronounced in egocentric views, where frequent hand oc-
clusions and dynamic camera perspectives make accurate
replacement highly demanding.

To address these issues, we present a text-guided object
replacement framework, Replace-in-Ego, which leverages
vision–language model (VLM)-based segmentation model
[8] in combination with a diffusion transformer (DiT) [14],
as shown in Fig. 1. With the recent advancement of VLM
[1, 8, 10, 18], it has become possible to obtain segmenta-
tion masks directly from natural language prompts, elimi-
nating the need for manual labeling. Moreover, unlike con-
ventional U-Net [16] based diffusion models such as Stable
Diffusion [15], our framework adopts DiT to exploit pow-
erful and reliable image generation capability. By repre-
senting latent features as patch tokens and modeling their
relationships through self-attention, DiT captures global
scene context more effectively, leading to improved struc-
tural consistency and sharper object boundaries in complex
replacement tasks.

Specifically, our Replace-in-Ego first takes target, refer-
ence images and the corresponding descriptive texts, and
predicts segmentation masks for the respective objects. The
masked target and reference images are concatenated to
serve as a compact representation by encoding both the tar-
get scene context and the visual details of the reference
object. The concatenated image is processed by a frozen
VAE encoder [5], while the reference mask is separately
embedded by a lightweight mask encoder. DiT then in-
tegrates these embeddings with sampled noise to generate
a new target image where the specified object is replaced
by the reference object in a seamless manner. To evalu-
ate Replace-in-Ego, we adopt TACO dataset [11] due to its
diversity of hand-object interactions from a first-person per-
spective, and showcase Replace-in-Ego yields superior re-
constructions in egocentric hand-object interaction scenes,
delivering cleaner boundaries, consistent object placement,
and realistic visual integration.



Figure 1. Overall pipeline of Replace-in-Ego. Replace-in-Ego takes target and reference images (Itgt and Iref ) with corresponding texts
(Ttgt and Tref ), produces masked images (Îtgt and Îref ) using an off-the-shelf vision-language model (VLM) [8], and encodes them via
a VAE [5] and mask encoder to obtain a VAE and mask embeddings (zvae and zmask). A diffusion transformer (DiT) [14] then fuses these
embeddings with a random noise to generate an output image Îoutput, which contains target scene with the replacement of the reference
object, via a VAE decoder.

2. Method

2.1. Overall Architecture

As illustrated in Fig 1, our pipeline, Replace-in-Ego, first
takes a target image Itgt and a target text Ttgt specifying
the object to be replaced. In addition, a reference image
Iref and a reference text Tref are also fed as inputs. Next,
an off-the-shelf vision–language model (VLM) [8] predicts
corresponding binary masks Mtgt and Mref for Itgt and
Iref , isolating the described objects. Mtgt and Mref are
used to obtain a masked target image Îtgt and a masked ref-
erence image Îref , which are concatenated to form a com-
pact representation Îconcat for a diffusion transformer (DiT)
[14]. Îconcat is then encoded by a frozen VAE [5] to pro-
duce a VAE embedding zvae, which contains a contextual
feature. In parallel, Îref is fed into a separate mask encoder
[20] to extract a mask embedding zmask, which has a shape-
specific feature. Finally, DiT fuses zvae, zmask, and a ran-
dom noise embedding to generate an output image Îoutput,
which contains the target scene and the reference object in
place, via a VAE decoder.

2.2. Vision-Language Model

To obtain binary masks of objects (Mtgt and Mref ) without
manual annotation, we employ the pre-trained VLM capa-
ble of segmentation from images (Itgt and Iref ) and texts
(Ttgt and Tref ). Itgt and Iref are first processed by SAM
[6] as a vision backbone which then produces high-quality
visual features. These features, along with Ttgt and Tref ,
are fed into a multi-modal LLM [10], which is equipped
with a pretrained LoRA [4] module for efficient adapta-
tion to segmentation tasks without modifying the frozen
backbone parameters. This architecture allows Replace-in-
Ego to directly infer segmentation masks from natural lan-
guage descriptions, enabling flexible object selection with-
out manual annotations.

Following the prediction of binary masks from VLM, we
produce Îtgt and Îref by applying Mtgt and Mref to Itgt
and Iref , respectively. In Îtgt, the pixels corresponding to
the object to be replaced are removed, while the background
is kept intact to maintain the spatial context of the scene. In
Îref , only the replacement object remains visible, with all
other pixels set to zero, isolating the object’s visual charac-
teristics. The overall process is formulated as follows:

Îtgt = Itgt ⊙ (1−Mtgt), Îref = Iref ⊙Mref , (1)

where ⊙ denotes pixel-wise multiplication.

2.3. Diffusion Transformer
For training and inference for DiT, we first extract the VAE
and mask embeddings (zvae and zmask) by the VAE and
mask encoder. Specifically, Îtgt and Îref are concatenated
along with the width dimension and Îconcat is obtained.
This target-reference composite maintains spatial layout in-
formation from the target scene while underlying the com-
plete visual cues of the reference object. Îconcat is sub-
sequently passed into the frozen VAE encoder to produce
zvae. In parallel to VAE encoding, Îref is separately pro-
cessed by the mask encoder to yield zmask. It provides fine-
grained object-centric information to guide the replacement
process.

During training, we follow forward and reverse diffusion
process as general diffusion models [3, 17]. First, in the
forward process, Gaussian noise is incrementally added to
the clean latent z0, which is encoded from a ground-truth
image by VAE encoder, over T timesteps. At a randomly
sampled timestep t, a noisy latent zt is obtained as follows:

zt =
√
ᾱt z0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (2)

where ᾱt denotes a noise level of t.
Next, the reverse diffusion process iteratively generates

the output latent, which contains the target scene with the
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Figure 2. Qualitative results of Replace-in-Ego. Each row shows two insertion tasks, first and fourth columns indicate the target object
(red box), second and fifth columns provide the reference object from another scene (green box), and third and sixth columns display the
output generated by Replace-in-Ego (green box).

reference object seamlessly integrated. Unlike convolu-
tional U-Net [16] based denoisers [15], DiT processes latent
conditions as patch tokens, enabling each transformer block
to capture both fine-scale local details and long-range spa-
tial relationships through self-attention and cross-attention
mechanisms. Specifically, at each timestep t, DiT receives
zt, which is generated by the forward process, zvae, which
contains the context of target scene and reference appear-
ance, and zmask, which is derived from the reference object
mask. These conditioning signals are tokenized and embed-
ded into the transformer layers, where cross-attention mod-
ules allow the noisy latent tokens to query relevant features
from zvae and zmask. Consequently, the forward and re-
verse processes for a denoising network ϵθ are carried out
to predict ϵt with following objective:

L = Ez0,t,ϵt

[
∥ϵt − ϵθ(zt, zvae, zmask, t)∥22

]
. (3)

Minimizing this loss encourages ϵθ to accurately predict
noise across different timesteps, improving robustness and
reconstruction fidelity.

During inference, the pre-trained ϵθ progressively de-
noises a pure Gaussian noise to obtain final latent, and it
is decoded to the output image Îoutput with the VAE de-
coder. Therefore, this transformer-based design allows the
generator to maintain global scene consistency while inte-
grating the reference object into the target scene with real-
istic boundaries and textures.

3. Experiments

3.1. Implementation Details
For the dataset, we adopted TACO [11], which provided di-
verse egocentric recordings with natural hand-object inter-
actions. All images were pre-processed at pixel resolution
of 768 × 768. In VLM, a vision backbone was SAM [6],
and a language backbone was LLaVA [10] with pretrained
LoRA [4]. In DiT, we designed it based on FLUX.1 Fill
[dev] [7], a DiT-based generative model. We optimized DiT
using Prodigy Optimizer [13] with a weight decay of 0.01, a
batch size of 4, and train for 30 epochs on a single NVIDIA
H100 GPU. We followed the standard noise prediction loss
of DDPM [3] as training objective to ensure stable conver-
gence.

3.2. Results
As shown in Fig. 2, we showed qualitative results of
our model, Replace-in-Ego. Each row shows two inser-
tion tasks, first and fourth columns indicate target objects,
second and fifth columns provide reference objects from
another scene, and third and sixth columns display out-
put images generated by Replace-in-Ego. The generated
results consistently demonstrated Replace-in-Ego not only
preserves the shape and appearance of the reference ob-
ject, but also seamlessly adapts to the context of the target
scene, even in egocentric perspectives involving complex
hand–object interactions. Specifically, Replace-in-Ego suc-
cessfully handled challenging cases involving variations in
object scale, orientation, and background clutter. For exam-
ple, when the reference object was rotated or partially oc-



cluded, the generated output still produced a coherent ob-
ject placement without noticeable artifacts. Moreover, the
boundaries between the inserted object and the surround-
ing scene were well-aligned, indicating Replace-in-Ego ef-
fectively leveraged both the VAE and mask representations.
Therefore, these results confirmed Replace-in-Ego achieved
realistic and contextually consistent object insertion in first-
person interaction scenarios.

4. Conclusion

We present Replace-in-Ego, an end-to-end framework
for object replacement that integrates segmentation-aware
vision-language model (VLM) with a diffusion transformer
(DiT). Replace-in-Ego targets egocentric hand-object in-
teraction scenarios, which are challenging due to frequent
hand occlusions and dynamic camera perspectives. We ad-
dress this issue by combining multi-modal features obtained
from VLM. The combined representation encodes both the
target scene context and the reference object appearance,
guiding DiT to generate a realistic replacement under di-
verse egocentric views. Experimental results demonstrate
Replace-in-Ego effectively preserves scene context while
generating semantically faithful output, marking a signifi-
cant step toward controllable generative modeling for com-
plex everyday interactions.
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