Leveraging RGB Images for Pre-Training of
Event-Based Hand Pose Estimation

Takehiko Ohkawa'
Angela Yao?
! The University of Tokyo, Japan 2

Ruicong Liu 2

Abstract

This paper presents RPEP, the first pre-training method for
event-based 3D hand pose estimation using labeled RGB
images and unpaired, unlabeled event data. Event data
offer significant benefits such as high temporal resolution
and low latency, but their application to hand pose esti-
mation is still limited by the scarcity of labeled training
data. To address this, we repurpose real RGB datasets to
train event-based estimators. This is done by construct-
ing pseudo-event-RGB pairs, where event data is generated
and aligned with the ground-truth poses of RGB images.
Unfortunately, existing pseudo-event generation techniques
assume stationary objects, thus struggling to handle non-
stationary, dynamically moving hands. To overcome this,
RPEP introduces a novel generation strategy that decom-
poses hand movements into smaller, step-by-step motions.
This decomposition allows our method to capture temporal
changes in articulation, constructing more realistic event
data for a moving hand. Additionally, RPEP imposes a mo-
tion reversal constraint, regularizing event generation us-
ing reversed motion. Extensive experiments show that our
pre-trained model significantly outperforms state-of-the-art
methods on real event data, achieving up to 24% improve-
ment on EvRealHands. Moreover, it delivers strong perfor-
mance with minimal labeled samples for fine-tuning, mak-
ing it well-suited for practical deployment.

1. Introduction

Capturing 3D hands from RGB images has been studied ex-
tensively [2, 5, 13, 15-17, 23, 24], but it remains vulnerable
under challenging conditions such as wide brightness varia-
tion, complex lighting, and fast hand motion [7, 14]. Event
cameras [8] are an alternative to RGB cameras that asyn-
chronously capture per-pixel intensity changes. They can
record high dynamic range images with an ultra-high frame
rate (up to 1 ps latency) [6, 9, 18-20, 25].

Despite their advantages, datasets with real event data
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Figure 1. We propose a pre-training method for event-based hand
pose estimation using labeled RGB images and unpaired, unla-
beled event data. At the core of our approach is an iterative con-
struction module that generates a pseudo-event frame for each in-
put RGB image, forming pseudo RGB-event pairs that reflect dy-
namic hand movements.

for 3D hand pose estimation are scarce due to the difficulty
of annotation. Unlike RGB images, event data lacks tex-
ture information, making it difficult to annotate accurate 3D
hand poses. The EvRealHand dataset [6] is the first and
only large-scale dataset to provide annotated real event data
of hands. Although it offers event streams with 3D hand an-
notations, it heavily relies on a complex rig equipped with
synchronized multi-camera RGB and event sensors. Such
reliance on a studio-style capture rig limits its diversity and
authenticity.

The lack of evnt datasets motivates our approach called
RPEP (Fig. 1): leveraging RGB images for Pre-training
of Event-based hand Pose estimation, helping to reduce
the dependence on event annotations. To learn event-based
models from RGB images, previous studies [11, 21] con-
struct pseudo-paired RGB—event data. In this process, the
generated pseudo-event frames are aligned with the ground-
truth pose of the RGB image. This alignment allows using
the ground-truth hand pose annotations of the RGB images
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Figure 2. Comparison of (a) RGB-event pair construction of previous methods [4, 11], (b) real event camera’s capture process, and (c) our

construction method for hands.

to train event-based estimators. However, existing algo-
rithms for constructing RGB—event pairs [4, | 1] are not well
suited for hand data, due to their poor reconstruction qual-
ity. As shown in Fig. 2 (a), previous methods generate event
frames that are sparsely distributed along image edges. In
contrast, the real event frame in Fig. 2 (b) exhibits a denser
distribution in the finger regions, where finger articulations
naturally trigger events. Such discrepancy in event distribu-
tion brings a huge domain gap between real and constructed
event data, which hinders the learning process and degrades
the model’s generalization to real environment.

Such poor construction quality stems from the station-
ary assumption underlying existing algorithms. As shown
in Fig. 2 (a), prior methods [4, 11] generate pseudo-events
only once from a single RGB frame. This one-time con-
struction implicitly assumes that the hand undergoes only
rigid pose changes (i.e., translation and rotation) between
frame k and frame k£ 4 1. It thereby ignores non-rigid ar-
ticulations, which will induce additional events within this
interval. Consequently, the constructed events appear only
along static image edges. In contrast, due to the high tempo-
ral resolution of event cameras, real sensors capture much
denser articulations that occur from frame £ to k + 1, as
illustrated in Fig. 2 (b). These events are distributed across
articulation regions such as moving fingers and the palm,
covering all areas of motion.

To construct more realistic pseudo-event data, we refor-
mulate the original one-time construction into a process that
simulates the real event accumulation process, as shown in
Fig. 2 (c). From a single frame k, our method generates
multiple intermediate RGB frames by warping, simulating
the image changes caused by articulations. For each RGB
frame, we then perform a one-time construction [4, 11] to
generate corresponding pseudo-event frame. Over time,
the final pseudo-event frame is generated by accumulat-
ing all previous pseudo-event frames. Unlike prior methods
[4, 11], our construction process allows for articulations of

the hand, thereby facilitating a more authentic simulation of
the event accumulation.

To achieve the above process, we implement an itera-
tive construction module, which separates the event accu-
mulation into 7T iterations. At each iteration, this module
generates an optical flow map to both 1) warp the RGB im-
age and 2) construct pseudo-event frame. As the process
progresses, the image evolves, leading to the construction
of event data that captures dynamic articulations. To esti-
mate the optical flow map, we use the RGB image and an
unpaired, unlabeled event frame as input. In detail, we ex-
tract 1) the visual appearance feature of the RGB input and
2) the motion priors, such as direction and trajectory, from
the event input. The motion priors provide necessary move-
ment information, thereby enabling the static RGB hand to
“articulate”. The appearance feature and motion priors are
then fed into a decoder to estimate the flow map.

Additionally, RPEP imposes a novel motion reversal
constraint, ensuring the the semantic correctness of the mo-
tion priors. In other words, it ensures that the motion prior
truly represent information such as physical moving direc-
tion and trajectory. Starting from a constructed pseudo-
event frame, we create a reversal frame with a completely
opposite motion direction and trajectory. Our method then
maximizes the difference between the two motion priors
from pseudo-event and reversal frames. This constraint en-
sures the consistency between the extracted motion priors
and the physical motion dynamics.

We evaluate our method across multiple challenging sce-
narios (e.g., flash and strong light) using the EvRealHands
dataset [6] as the evaluation target. Extensive experimental
results demonstrate the superior performance of our method
compared to existing transfer learning [3, 11, 22, 26] and
pre-training [1] methods. In comparison to these methods,
RPEP exhibits a relative improvement rate of 24% in nor-
mal scenes, 20% in strong light scenes, and 14% in flash
light scenes.
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Figure 3. Overview of the proposed method, where labeled RGB images and unpaired, unlabeled event frames serve as inputs for training.
(a) Feature extractors, Frg, and Fey, extract features from their respective inputs. (b) Our iterative construction module constructs pseudo-
event frames from these features, which are then fed into o, for feature alignment. The features fio, foy, and fi,., are all aligned to the
same feature space. (c) [llustration of the iterative construction process. Event frames from all iterations are accumulated together to get

the final pseudo-event frame.

2. Proposed Method

We introduce RPEP, a novel pre-training method for event-
based hand pose estimation leveraging RGB images. Our
goal is to learn an event-based hand pose estimator, H =
Fev © P, which comprises a feature extractor F., and a
multi-layer perceptron (MLP) P.

As illustrated by Fig. 3 (a), our method employs two
feature extractors: an RGB extractor F4, and an event ex-
tractor Fe,. They process unpaired inputs, an RGB image
Xrgh € RIXWX3 and event frame xe, € RT*W>2 (event
histogram [10]), respectively. We design F., to capture the
following two features from x.,. 1) The appearance fea-
ture f., represents the hand pose, 2) and the motion pri-
0irs z.y represents the moving direction and trace. The
RGB extractor JFyp, solely extracts the appearance feature
fiop from X, since the hand image is stationary and con-
tains no motion information. The X4, and z., are combined
and fed into our iterative construction module to construct
the pseudo-event frame Xpey .

Feature alignment. To enable effective knowledge transfer
and representation sharing across modalities, the MLP P is
shared between both RGB and event. This encourages the
extracted features f., and ., to be aligned in the same latent
space. We further employ adversarial learning to explicitly
align f., and f.g,. In addition, we align features between the
original input data and the constructed pseudo-event frames,
i.e., fiop with £y, and ze, with zpe,.

Iterative construction. To simulate to process of Fig. 2
(c), we separate the time window A7 into multiple itera-

tions and develop an iterative construction module. In each
iteration ¢, we use a decoder G to generate an optical flow
map ¥(*). Its input contains the appearance feature of the
input RGB image and the motion prior of the input event
frame, i.e., ¥ = G(figb, Zev). The estimated flow map ¥ s
used for two purposes: 1) generating a sub-pseudo event
frame xl()g,, and 2) warping the RGB image to reflect the
dynamic image changes caused by articulation. After 7" it-
erations, all event frames are accumulated to form the final
pseudo-event frame Xpey:

1 ~
Xpev = ZXPQ; = LZ vxr;b ) 'V(t)J'

This way, our construction process allows for variations in
the RGB image, thereby facilitating a more authentic sim-
ulation of the event accumulation process. Empirically, we
set T' = 6. Fig. 4 displays the constructed event frame, flow
map, and warped RGB image of each iteration.

Motion reversal constraint To ensure that the motion pri-
018, Zey and Zp.y, truly reflect actual physical dynamics, we
introduce a motion reversal constraint. Our method reverses

the flow map v(*) across iterations from 1 to 7', generating
/(%)

pev

§ : /(1)
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Here, we reverse the direction of motion using —v® and
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Table 1. Comparison with state-of-the-art methods. The evaluation set EvRealHands [6] is separated according to collection scenarios:
“Normal”, “Strong light”, and “Flash”. Within each scenario, samples are further divided into “Scripted” and “Unscripted” hand poses.

. Normal Strong light Flash

Method Metrics Scripted Unscripted Scripted Uncripted Scripted Uncripted
2 o oretrain 3D-MPJPE 27.98 49.12 31.95 52.94 36.20 51.53
5 p PA-MPJPE 13.38 17.95 16.96 19.36 15.04 22.29
2 Synthetic [18] 3D-MPJPE 37.04 56.77 37.76 56.73 37.33 57.70
ynthetie PA-MPJPE 18.78 20.09 20.47 20.60 17.42 25.76
SimCLR [1] 3D-MPJPE 32.72 52.49 30.94 53.90 41.28 58.04
m PA-MPJPE 13.92 17.14 16.41 17.88 15.40 22.95
VidZE (3] 3D-MPJPE 25.92 44.59 26.83 47.47 33.81 51.39
@ - PA-MPJPE 13.32 16.89 15.17 18.94 14.72 20.80
s 3D-MPJPE 2432 46.78 28.57 50.65 31.27 51.03
2 CycleGAN [26]  pA MpipE 13.13 16.34 15.95 18.08 15.08 21.98
g 3D-MPJPE 25.79 45.80 31.06 51.02 34.25 49.17
=  ADDA[2Z] PA-MPJPE 1332 1635 16.41 18.28 1527 22.09
3D-MPJPE 29.51 4781 34.34 53.19 34.15 51.59
RPG-EV [11] PA-MPJPE 1551 16.89 18.05 18.58 16.56 2261
RPEP (Ours) 3D-MPJPE 21.26 39.91 26.08 44.28 30.97 48.55
urs PA-MPJPE 12.11 15.45 14.47 17.85 14.06 20.11
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Figure 4. Constructed event frame, flow map, and RGB image
from each iteration, with image changes caused by articulation
highlighted in red rectangles.

7(t+1)

invert the trace by employing X'y

iteration ¢ + 1.

Given that the movement direction and trace of x’peV are
opposite to those of Xy, their motion features, z’p., and
Zpev, should exhibit high divergence. Therefore, we propose
a divergence loss Lg;y to minimize their cosine similarity.

from the subsequent

3. Experiment

In Tab. 1, we compare our method with state-of-the-
art approaches. In all experiments, we first pre-trains
an event-based pose estimator from labeled RGB data
from InterHand2.6M [12] and unlabeled event data from
EvRealHands[6]. Then, we fine-tune the pre-trained esti-
mator using a few labeled samples from the EvRealHands.

The compared methods include SimCLR [I], an un-
supervised pre-training approach; Vid2E [3] and Cycle-
GAN [26], which convert RGB videos into event represen-
tations; ADDA [22], a domain adaptation technique; and
RPG-EV [11], a transfer learning method that utilizes la-

beled RGB data along with unlabeled event data to train
event-based networks. For completeness, we also include
two baselines: 1) fine-tuning a randomly initialized estima-
tor without any pre-training, and 2) pre-training on a syn-
thetic event dataset, EventHands [18].

Tab. 1 presents the results after fine-tuning, showing that
our method consistently outperforms all state-of-the-art ap-
proaches under various lighting conditions, achieving the
lowest MPJPE error in every case. Interestingly, the “Syn-
thetic” setup performs worse than even the “w/o pre-train”
baseline, suggesting the huge domain gap between synthetic
and real event data. Most other RGB-pre-training meth-
ods outperform the baselines, highlighting the benefit of us-
ing real RGB data for pre-training. Notably, our method
surpasses RPG-EV by a significant margin—achieving an
8mm lower error—demonstrating the effectiveness of our
iterative pseudo-event construction in improving estimation
performance.

4. Conclusion

In this paper, we introduce RPEP, a novel pre-training
method for event-based 3D hand pose estimation leveraging
RGB images. The core innovation of RPEP is its iterative
construction module, which generates pseudo-event frames
that effectively accommodate dynamic hand motions. Ad-
ditionally, our method incorporates a motion reversal con-
straint to refine the extracted motion priors, leading to en-
hanced construction results. Evaluation results demonstrate
that RPEP outperforms state-of-the-art techniques, achiev-
ing significant performance gains across a range of chal-
lenging scenarios.
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