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Abstract

Despite the recent strides in video generation, state-of-the-
art methods still struggle with elements of visual detail. One
particularly challenging case is the class of videos in which
the intricate motion of the hand coupled with a mostly sta-
ble and otherwise distracting environment is necessary to
convey the execution of some complex action and its effects.
To address these challenges, we introduce a new method
for video generation that focuses on hand-centric actions.
Our diffusion-based method incorporates two distinct inno-
vations. First, we propose an automatic method to gener-
ate the motion area—the region in the video in which the
detailed activities occur—guided by both the visual context
and the action text prompt, rather than assuming this region
can be provided manually as is now commonplace. Sec-
ond, we introduce a critical Hand Refinement Loss to guide
the diffusion model to focus on smooth and consistent hand
poses. We evaluate our method on challenging augmented
datasets based on EpicKitchens and Ego4D, demonstrat-
ing significant improvements over state-of-the-art methods
in terms of action clarity, especially of the hand motion in
the target region, across diverse environments and actions.
1

1. Introduction

Videos have become the de facto medium for learning new
skills—from everyday tasks such as cooking to complex
procedures like surgery [10]. In these instructional videos
a pair of dexterous hands manipulates tools and objects
against a largely static, yet often cluttered, background.
Such data benefit not only humans but also serve as super-
vision for robot policies [13].

Unfortunately, existing benchmarks (e.g.,
YouCook2 [19] and Assembly101 [9]) capture real
environments but cannot be recorded on demand, and the
background diversity they contain can hamper both human
understanding and robot learning [2]. Generating tailored

*Equal contribution
1Video results can be found on the Full Paper

instructional video therefore remains an open challenge.
We formulate hand –centric video generation

(HCVG): given a text instruction and a single image
of the local scene, synthesise a short video that (i) performs
the requested action with realistic hand motion and object
state change, while (ii) leaving the rest of the scene un-
touched (no background hallucinations or camera shake).
HCVG differs from text –to –video [16] and instructive
video editing [1]: both ignore the strong spatial prior of a
reference image and are easily distracted by clutter.

To meet these requirements we introduce HANDI, a
two –stage diffusion pipeline. Stage 1 predicts a mo-
tion –area mask indicating where action should occur;
Stage 2 renders the video while a Hand –Refinement Loss
enforces smooth, articulated poses inside the mask. Both
stages share the same lightweight latent –diffusion back-
bone, keeping inference fast.

Experiments on augmented splits of Epic –Kitchens and
Ego4D show that HANDI surpasses recent TI2V models
in visual quality, hand accuracy, and prompt compliance,
while running in under nine seconds per clip.

Contributions
1. We formalise HCVG and release evaluation data and

metrics that focus on motion locality and hand quality.
2. We propose HANDI, combining automatic motion –area

discovery with a pose –aware refinement loss, achieving
state –of –the –art results.

2. Hand-Centric Video Generation
Task definition. Given a single RGB frame I∈RH×W×3

and an instruction T , generate an L-frame clip V ∈
RL×H×W×3 that performs the action in the same scene.
Only the hands, tools, and affected objects may move; the
rest of the scene remains fixed.

Pipeline overview. HANDI adopts a two-stage
latent-diffusion design (Fig. ??). Both stages share the
same 3D-UNet backbone employed by recent text-to-video
models [3, 11].
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Figure 1. Illustration of our proposed Hand-Centric Text-and-Image Conditioned Video Generation (HCVG). Given an image for context
and an action text prompt, our method generates video frames with precisely refined hand appearance and motion, overcoming challenges
like unreasonable motion in backgrounds. Unlike baselines that extend unnecessary motion to background with rough hand structure, our
approach produces motion in more reasonable area, as shown in the Motion flow visualization and refined hand details.

• Stage 1: Motion-area proposal. Conditioned on (I, T )
the network predicts a binary mask M that encloses the
hands and manipulated objects, steering later synthesis
and implicitly encoding object state change (Sec. 2.1).

• Stage 2: Video synthesis. We replicate the latent of I ,
concatenate M to each frame, inject the CLIP embed-
ding of T , and denoise for τ steps. A Hand-Refinement
Loss aligns 2D hand key-points between generated and
ground-truth clips, enforcing smooth, meaningful motion
(Sec. 2.2).

Training. Every training clip is encoded with the
Stable-Diffusion VAE [8]. Gaussian noise is added and
the UNet learns to predict it back via the DDPM objec-
tive. Stage 1 and Stage 2 alternate each epoch so that better
masks immediately improve video synthesis.

Inference. We encode I , replicate it L times, append the
Stage-1 mask, and denoise with the DPM++ solver [6]. Af-
ter decoding, static background pixels are overwritten with
I to remove any residual artefacts.

Why it works. (i) The learned motion mask removes
background distractions—a common failure of generic
TI2V models. (ii) The pose-aware refinement loss preserves
fine hand articulation that diffusion models otherwise blur.
(iii) Weight sharing means the full system adds only 7 %
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Figure 2. Training motion area masks are automatically created
from the training videos. We flood fill the convex hulls of the hand
regions, and then take the set-union of these over all frames.

parameters over a vanilla UNet and runs at 8.6 s per clip on
a single H100 GPU.

2.1. Automatically Estimating the Motion Area
A key challenge in HCVG is telling the generator where
motion should occur. We approximate ground-truth masks
by running a commodity hand-detector (MediaPipe Hands)
on every training frame, filling the convex hull of detected
joints, and taking the spatial union across time. The result-
ing binary map M ∈ [0, 1]H×W covers all likely hand-object



Training
Video

Current
Generated

Video

During Stage 2 Noise Predictor Training 

FramesFrames

SOTA Hand Keypoint Extraction

Compute Loss as MSE Between Each Joint

Figure 3. Illustrates the Hand Refinement Loss that drives the
stage 2 noise predictor to focus on the fine-grained detailed of the
hand pose in the context of the interaction. Bottom pose is for il-
lustration only. Our representation has 21 joints per hand.

interactions yet leaves most pixels untouched.
Stage 1 reuses the video UNet to predict M from the ref-

erence image I and the instruction T , with a dataset-level
frequency prior supplied as an extra channel. During infer-
ence the predicted mask( Fig. 2) is morphologically cleaned
and concatenated to every latent frame, forcing Stage 2 to
focus its generative capacity inside M . Ablations (§3) show
that this automatic mask cuts background artefacts by 34 %
and improves FVD by 18 % compared with mask-free base-
lines.

2.2. Hand Refinement Loss
Fine hand articulation is easily blurred by diffusion models.
We introduce a lightweight loss that aligns 2D hand joints
of the generated clip with those of the training clip.

As shown in ??, for each frame l we detect up to 21
joints per hand using the frozen detector Υ and stack them
as Pl∈RJ×2 with J = 42. Undetected joints are zero-filled
and ignored. The loss is mean-squared error over time and
joints:

LHR =
1

L

L∑
l=1

1

J
∥P gen

l − P train
l ∥22.

The loss becomes active once Υ detects a coarse hand
shape, steadily nudging the UNet toward smoother, more
realistic poses without extra parameters or post-processing.

2.3. Latent- and Pixel-Space Loss Portfolio
Automatic masks and pose refinement require losses in both
latent and pixel space.

Latent-space loss. The noise-prediction objective is

Lnoise = E(V,Etext,M{prior,gen}),ϵ∼N (0,1),t

[
∥ϵ−ϵθ(zt, t)∥22

]
.

(1)
Pixel-space reconstruction. A clean latent is recovered

via

z′0 =
zt −

√
1−

∏t
i=1(1− βi) ϵ√∏t

i=1(1− βi)
, (2)

then decoded to video for mask or pose supervision.
Stage 1 loss. A mask IoU term guides the first stage:

Lstage1 = Lnoise + αLmIoU , (3)

with

LmIoU = 1− 1

L

L∑
l=1

∑
i,j(M

gen
l M train

l )∑
i,j(M

gen
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l −Mgen
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l )
.

(4)
Stage 2 loss. Pose alignment complements noise predic-

tion:
Lstage2 = Lnoise + ηLHR. (5)

Hyper-parameters α and η are tuned on the validation
set.

3. Experiments

Method Parameters Inf. Time (s)

LFDM [7] 0.108 3.57
AA [3] 1.837 5.74

AVDC [15] 0.229 66.23
PIA [17] 1.483 13.8

Open Sora [18] 1.484 44
DynamiCrafter [12] 1.876 9.32

CogVideoX [14] 4.978 108.41
HANDI 3.674 8.64

Table 1. Efficiency results for the HANDI method on EpicK-
itchens benchmark. The table lists various parameters and their
corresponding efficiency values.

3.1. Ablation Study
Datasets. We report results on the LEGO-filtered splits of
Epic –Kitchens –100 (EK) and Ego4D, two raw egocentric
video corpora that focus on hand–object interaction. EK
contributes 60k/8.9k train/test clips; Ego4D adds 86k/9.9k.
Clips average 2.4 s and 1.1 s, cover 97/1772 verbs and
300/4336 nouns, and exhibit real –world clutter and light-
ing variation. Metrics. Visual quality is measured with
frame –level FID and CLIPGT plus video –level FVD and
EgoVLP. Semantic alignment uses CLIPTx. (frames) and
BLIP (videos). Temporal coherence is captured by CLIPCs.

and FVD. Hand accuracy is assessed by HS –Err. (§2.2).



Benchmark Method HS-Err. ↓ VisualSim.-Frame VisualSim.-Video Consistency SemanticSim.

FID ↓ CLIPGT ↑ FVD ↓ EgoVLP ↑ CLIPCs. ↑ CLIPTx. ↑ BLIP ↑

EpicKitchens

LFDM [7] 0.01987 39.37 0.9241 129.80 0.354 0.9826 28.37 0.235
AA [3] 0.01908 5.49 0.9588 171.29 0.338 0.9843 29.97 0.295

AVDC [15] 0.01969 140.34 0.8918 81.39 0.197 0.9582 24.66 0.116
PIA [17] 0.01826 24.70 0.9446 212.88 0.361 0.9849 30.06 0.294

Open Sora [18] 0.01968 135.34 93.823 124.52 0.187 0.9573 24.46 0.186
DynamiCrafter [12] 0.01716 43.56 0.9306 175.79 0.348 0.9131 28.22 0.288

CogVideoX [14] 0.01981 127.51 0.9362 121.06 0.214 0.9677 25.13 0.176
HANDI 0.01512 5.27 0.9590 101.89 0.377 0.9896 31.14 0.298

Ego4D

LFDM [7] 0.02127 50.67 0.9204 126.71 0.535 0.9821 26.93 0.221
AA [3] 0.02393 21.83 0.9647 129.60 0.642 0.9894 28.56 0.260

AVDC [15] 0.02117 144.91 0.8816 107.82 0.261 0.9722 24.17 0.155
PIA [17] 0.02393 34.62 0.9457 104.38 0.603 0.9746 29.15 0.219

Open Sora [18] 0.02142 141.90 0.8716 117.87 0.252 0.9753 24.12 0.172
DynamiCrafter [12] 0.02203 57.21 0.9386 181.24 0.336 0.9489 26.67 0.231

CogVideoX [14] 0.03079 187.20 0.8962 165.18 0.201 0.9900 28.22 0.147
HANDI 0.01939 21.51 0.9651 103.15 0.664 0.9873 28.63 0.263

Motion Intensive

LFDM [7] 0.02053 56.95 0.9254 137.44 0.303 0.9825 28.39 0.210
AA [3] 0.01764 23.93 0.9591 115.14 0.368 0.9845 30.07 0.276

AVDC [15] 0.02143 148.11 0.8933 85.97 0.204 0.9579 24.60 0.102
PIA [17] 0.01940 40.97 0.9448 217.59 0.330 0.9719 30.09 0.280
HANDI 0.01663 23.79 0.9589 114.52 0.371 0.9849 31.12 0.327

Table 2. Quantitative results on EpicKitchens [4], Ego4D [5] and a Motion Intensive subset of EpicKitchens. HANDI (ours) outperforms
all baselines across all metrics on at least one benchmark. VisualSim.-Frame represents the aspect of visual similarity at frame level;
VisualSim.-Video represents visual similarity at video level; SemanticSim. stands for Semantic Similarity. For each column in each
benchmark section, bold represents the best performance and underline stands for the second best one.

Figure 4. The visualization for ablation study showing the inde-
pendent effectiveness of Motion Area generation and Hand Refine-
ment Loss. The red boxes are not in the generated videos. They
are drawn for better illustration, showing the area that reflects the
effectiveness of the ablated components.

Baselines. We fine –tune seven strong TI2V/T2V mod-
els—LFDM, AnimateAnything (AA), DynamiCrafter, PIA,
AVDC, Open –Sora, and CogVideoX—on the same data for
50 epochs.

Main results. Tab. 2 shows that HANDI achieves the
best or second –best score on every metric across EK,
Ego4D, and a motion –intensive EK subset (top 10 % largest
masks). Gains are especially large in HS –Err and semantic

scores, confirming that motion –area focus and hand refine-
ment translate to perceptually better clips. Full paper pro-
vides visual examples, where baselines blur hands or hal-
lucinate background motion while HANDI keeps the scene
intact.

Efficiency. Despite its two –stage design, HANDI de-
codes a 16 –frame clip in 8.6 s—faster than DynamiCrafter
and orders of magnitude faster than CogVideoX—thanks to
stage sharing (Tab. 1).

Ablation. Quantitative resutls can be found in full pa-
per. As shown in Fig. 4 Adding either the learned mask or
the Hand Refinement Loss improves all metrics; combining
both delivers the largest jump, cutting HS –Err by 28 % and
FVD by 41 % inside the motion area.

4. Conclusion

Generating videos of goal-oriented hand actions is vital
for human- and robot-skill learning yet remains under-
explored. HANDI tackles this by automatically predicting
a motion-area mask from the image-text prompt so synthe-
sis stays confined to the relevant region, and by introducing
a hand-refinement loss that sharpens pose realism. On two
challenging egocentric datasets, these additions give clear
gains over strong diffusion baselines. Future work will ex-
plicitly model the manipulated objects and tools.
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