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Abstract

Egocentric vision is essential for both human and ma-
chine visual understanding, particularly in capturing the
detailed hand-object interactions needed for manipulation
tasks. Translating third-person views into first-person views
significantly benefits augmented reality (AR), virtual re-
ality (VR) and robotics applications. However, current
exocentric-to-egocentric translation methods are limited by
their dependence on 2D cues, synchronized multi-view set-
tings, and unrealistic assumptions such as necessity of ini-
tial egocentric frame and relative camera poses during
inference. To overcome these challenges, we introduce
GenEgo, a novel two-stage framework that generates an
egocentric view from multimodal exocentric observations,
including projected point clouds, 3D hand poses, and tex-
tual descriptions. Our approach reconstructs a point cloud
from estimated exocentric depth maps, reprojects it into the
egocentric perspective, and then applies diffusion-based in-
painting to produce dense, semantically coherent egocentric
images. Evaluated on the H2O and TACO datasets, GenEgo
achieves state-of-the-art performance and demonstrates ro-
bust generalization to unseen objects, actions, scenes, and
subjects. Moreover, GenEgo shows promising results even
on unlabeled real-world examples.

1. Introduction

Egocentric vision is crucial for understanding fine-grained
hand-object interactions, which are central to skill-intensive
tasks like cooking or assembling. Yet, most videos are
recorded from third-person views due to the scarcity of
head-mounted cameras, making it challenging to provide
intuitive first-person guidance. Translating exocentric in-
puts into egocentric views would benefit AR/VR applica-
tions, instructional content, and robotics, where perception
is inherently egocentric. For example, converting third-
person instructional videos into first-person perspectives al-
lows clearer visualization of finger movements and enables

†Corresponding author.

user-centered world models for real-time interaction.
Despite its potential, exocentric-to-egocentric translation

is difficult due to large visual and geometric gaps between
the two views. Egocentric views emphasize hands and ma-
nipulated objects, while exocentric views capture broader
context. Occlusions, field-of-view restrictions, and unseen
regions make geometric alignment challenging. Existing
generative approaches often rely on restrictive assumptions
such as multi-view inputs, pre-defined camera poses, or ref-
erence egocentric frames [2, 8, 20], limiting their applica-
bility. A recent work, Exo2Ego [11], generates egocentric
views from a single image, but depends heavily on accurate
2D hand layouts, making it unreliable under occlusion or
clutter and prone to overfitting.

Therefore, we introduce GenEgo, a framework that gen-
erates egocentric view from exocentric view by leverag-
ing multimodal exocentric observations. Our two-stage
pipeline (1) extracts projected point clouds, 3D hand poses,
and text descriptions from exocentric view, and (2) recon-
structs dense egocentric view via diffusion models with ex-
ocentric observations. Specifically, we construct a point
cloud by combining the input exocentric RGB image with
a scale-aligned estimated exocentric depth map, using the
3D exocentric hand pose for spatial calibration. This point
cloud is then transformed into the egocentric view using
a translation matrix computed from the predicted 3D hand
poses in both views. After the projection of the point cloud,
a sparse egocentric image is obtained and it is subsequently
reconstructed into a dense, high-quality egocentric image
with semantic and structural guidance.

We evaluate the effectiveness of GenEgo through ex-
tensive experiments conducted on the H2O [7] and TACO
[9] datasets, which provides well-annotated exocentric and
egocentric video pairs. Our method achieves state-of-the-
art performance on this benchmark. As a result, thanks to
its end-to-end design, GenEgo demonstrates strong general-
ization across various scenarios, including unseen objects,
actions, scenes, and subjects. Furthermore, we conduct on
unlabeled real-world examples, and GenEgo shows power-
ful in-the-wild generalization, which implies GenEgo can
extend to real-world use cases.



Figure 1. Overall framework of GenEgo. GenEgo is a two-stage pipeline : (1) Exocentric view observation Φexo, which extracts diverse
observations from the exocentric view, including projected point clouds, 3D hand poses, and textual descriptions; and (2) egocentric view
reconstruction Φego, which reconstructs the egocentric view based on the exocentric view observation.

2. Method

2.1. Exocentric View Observation

As shown in Fig. 1, exocentric view observation Φexo takes
various real-world observations, such as sparse egocentric
RGB map Sego, 3D egocentric hand pose Pego, and textual
description Texo, from a single exocentric image Iexo.

First, with an off-the-shelf depth estimator [17], an ex-
ocentric depth map Dexo is extracted from Iexo. Next,
a 3D exocentric hand pose Pexo is extracted from Iexo
with an off-the-shelf hand pose estimator [22]. As Dexo

provides only relative depth and is inherently affected by
scale ambiguity, it is crucial to leverage Pexo for reason-
able scale fitting. Thus, we extract a metrically-scaled Pexo

and an exocentric hand depth map Dhand from the esti-
mated MANO[14]-based mesh of Pexo. We define a hand
region Ωhand, which is a pixel-level valid area determined by
Dhand, and compute a global scale factor s∗ by comparing
it with Dexo. Applying s∗ yields a metrically-calibrated ex-
ocentric depth map D′

exo = s∗Dexo. Therefore, with Iexo
and an exocentric camera intrinsic parameter Kexo, which
is estimated from the off-the-shelf depth estimator, D′

exo is
utilized to obtain a point cloud Cexo.

To project Cexo in the egocentric view, we need an
exocentric-to-egocentric view translation matrix X , which
can be computed through a transformation between Pexo

and Pego. To obtain Pego, we build a 3D egocentric hand
pose estimator ϕego, which is designed with a simple ar-
chitecture consisting of a ViT[3]-based backbone ϕbackbone

and an MLP-based regressor ϕreg . We optimize ϕego with
an L2 loss function. From Pexo and Pego, we calculate
X between them with the Umeyama algorithm [16], which
estimates a transformation matrix. Therefore, we translate
Cexo with X into Cego, project it into egocentric view with
an egocentric camera intrinsic parameters Kego, and obtain
the sparse egocentric RGB map Sego.

Finally, Texo is extracted with an off-the-shelf vision-

language model (VLM) [1]. For example, when Iexo and
user-provided question (i.e., “Describe in detail about the
scene and the object that the person is interacting with us-
ing their hands.”) are given, VLM outputs the correspond-
ing answer Texo.

2.2. Egocentric View Reconstruction

As shown in Fig. 1, egocentric view reconstruction Φego re-
constructs a dense and reliable egocentric image Îego using
exocentric observations Sego, Pego, and Texo by leveraging
the powerful latent diffusion model (LDM) [13]. Following
the LDM, Sego and Pego are encoded into the latent embed-
ding sego and pego using a frozen VAE encoder [4], random
noises are added and denoised to sego and pego, and the
denoised latent embedding is decoded into Îego using the
frozen VAE decoder.

During training, the ground-truth egocentric image Iego
is encoded to a clean latent z0 through the VAE encoder,
and the noise ϵt is added to z0 to make a noisy embedding
zt with timestep t. By concatenating sego, pego, and zt, we
obtain 9-channel latent embedding z′t, which is fed into the
input of a pre-trained U-Net [15]. Simultaneously, a textual
description Texo is passed through CLIP [12] to obtain a text
embedding cexo, which serves as guidance for the U-Net of
LDM. In this manner, the forward and reverse processes for
denoising network ϵθ are carried out to predict ϵt with the
L2 objective.

During sampling, we start the denoising process from a
random Gaussian noise zT ∼ N (0, I) with well-trained ϵθ.
We concatenate zT with sego and pego, and feed to ϵθ to ob-
tain the predicted latent ẑ0 by reversing the schedule at each
timestep t. We adopt classifier-free guidance (CFG) [6] to
strengthen textual guidance. To the end, the final generated
egocentric image Îego is obtained from ẑ0 by passing the
VAE decoder.



Table 1. Comparisons with state-of-the-arts on unseen scenar-
ios (i.e., objects, actions, scenes, and subjects) in H2O [7].
Compared to state-of-the-arts (i.e., pix2pixHD [18], pixelNeRF
[21], and CFLD [10]), GenEgo outperforms for all unseen sce-
narios in all metrics (i.e., FID, PSNR, SSIM, and LPIPS).

Scenarios Unseen Objects Unseen Actions
Methods FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓

pix2pixHD [18] 436.25 25.012 0.2993 0.6057 211.10 24.420 0.2854 0.6127
pixelNeRF [21] 498.23 26.557 0.3887 0.5372 251.76 27.061 0.3950 0.8159
CFLD [10] 59.615 25.922 0.4307 0.4539 50.953 28.529 0.4324 0.4593
GenEgo (Ours) 41.334 31.171 0.4814 0.3476 33.284 31.620 0.4566 0.3780

Scenarios Unseen Scenes Unseen Subjects
Methods FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓

pix2pixHD [18] 490.32 18.567 0.2425 0.7290 452.13 18.172 0.3310 0.7234
pixelNeRF [21] 489.13 26.537 0.2574 0.7143 493.13 22.636 0.4135 0.6838
CFLD [10] 118.10 29.030 0.3696 0.6841 129.30 21.050 0.4001 0.6269
GenEgo (Ours) 90.893 31.004 0.4096 0.6519 96.429 24.851 0.4605 0.6188

3. Experiments
3.1. Setup
We evaluate GenEgo on H2O [7] and TACO [9], which pro-
vide synchronized multi-view data with 3D hand poses and
depth. H2O contains diverse indoor videos with egocentric
and exocentric views. Following [11], we assess generaliza-
tion on four splits: (1) unseen objects, (2) unseen actions,
(3) unseen scenes, and (4) unseen subjects. To further ver-
ify scalability, we test on TACO, which involves 196 objects
and 15 actions, adopting an unseen actions setting for evalu-
ation. In addition, we adopt common image quality metrics
[8, 11]: FID [5], PSNR, SSIM [19], and LPIPS [23], cov-
ering perceptual fidelity, pixel-level accuracy, and human-
perceived similarity.

3.2. Results
We compare with pix2pixHD [18], pixelNeRF [21], and
CFLD [10]. On H2O across all four unseen splits, GenEgo
achieves the best results on every metric as shown in Tab. 1.
pix2pixHD and pixelNeRF yield noisy or blurry results due
to their design assumptions (label-to-image or multi-view
synthesis). CFLD shows stronger hand reconstructions but
struggles with unseen objects and backgrounds. In con-
trast, GenEgo integrates diverse cues, i.e., sparse maps, 3D
poses, and text, to generate coherent and natural egocentric
views, yielding large improvements (up to 30–35% in FID
and consistent gains in PSNR, SSIM, LPIPS). As shown
in Fig. 2, visual comparisons confirm that our method
restores both hand-object details and background regions
more faithfully. On TACO, which is more challenging than
H2O due to its diversity of objects and actions, GenEgo
maintains strong generalization, outperforming CFLD by
reconstructing not only hands but also interacting objects
and scene context as shown in Fig. 3.

To test in-the-wild generalization, we apply GenEgo to
single exocentric images captured by a smartphone. As
illustrated in Fig. 4, our approach generates realistic ego-

Figure 2. Comparisons with state-of-the-arts on unseen sce-
narios (i.e., objects, actions, scenes, and subjects) in H2O [7].
Compared to state-of-the-arts (i.e., pix2pixHD [18], pixelNeRF
[21], and CFLD [10]), GenEgo outperforms the reconstruction
quality with respect to hand-object interaction and background re-
gions for all unseen scenarios.

Figure 3. Comparisons with state-of-the-art on unseen actions
scenario in TACO [9]. Compared to state-of-the-art (i.e., CFLD
[10]), GenEgo outperforms the reconstruction quality with respect
to hand-object interaction and background regions even on more
challenging scenarios than H2O [7].

Figure 4. Real-world comparisons with state-of-the-art. Com-
pared to state-of-the-art (i.e., CFLD [10]), GenEgo significantly
outperforms with respect to hand-object interaction and back-
ground regions for in-the-wild scenarios.

centric views, while CFLD produces unnatural outputs bi-
ased toward training data. Therefore, GenEgo effectively
leverages sparse cues to generalize beyond curated datasets,
demonstrating strong potential for real-world applications.



4. Conclusion
In this work, we propose GenEgo, a novel framework for
translating exocentric observations into egocentric views
using rich multimodal exocentric cues. Our two-stage ap-
proach first extracts exocentric observations, such as pro-
jected point clouds, 3D hand poses, and textual descrip-
tions, and then generates a realistic egocentric image from
a sparse egocentric map via a diffusion model conditioned
on pose and text. Extensive experiments on the H2O and
TACO benchmarks validate the effectiveness and superior-
ity of GenEgo. Moreover, GenEgo shows powerful gener-
alization ability on unlabeled real-world samples compared
to state-of-the-art, and it implies GenEgo is enough to ex-
tend in-the-wild scenarios. These results demonstrate the
potential of GenEgo as a robust and versatile solution for
egocentric view generation from exocentric inputs, paving
the way for future research in cross-view understanding and
generation.

References
[1] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan

Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A versatile vision-language model for un-
derstanding, localization, text reading, and beyond. arXiv
preprint arXiv:2308.12966, 2023. 2

[2] Feng Cheng, Mi Luo, Huiyu Wang, Alex Dimakis, Lorenzo
Torresani, Gedas Bertasius, and Kristen Grauman. 4diff: 3d-
aware diffusion model for third-to-first viewpoint translation.
In ECCV, pages 407–425, 2024. 1

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly,
et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR, 2020. 2

[4] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
pages 12873–12883, 2021. 2

[5] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. NeurIPS, 30:6626–6637, 2017. 3

[6] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 2

[7] Taein Kwon, Bugra Tekin, Jan Stühmer, Federica Bogo, and
Marc Pollefeys. H2o: Two hands manipulating objects for
first person interaction recognition. In CVPR, pages 10138–
10148, 2021. 1, 3

[8] Jia-Wei Liu, Weijia Mao, Zhongcong Xu, Jussi Keppo, and
Mike Zheng Shou. Exocentric-to-egocentric video genera-
tion. NeurIPS, 37:136149–136172, 2024. 1, 3

[9] Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang
Zhang, Yebin Liu, and Li Yi. Taco: Benchmarking general-
izable bimanual tool-action-object understanding. In CVPR,
pages 21740–21751, 2024. 1, 3

[10] Yanzuo Lu, Manlin Zhang, Andy J Ma, Xiaohua Xie, and
Jianhuang Lai. Coarse-to-fine latent diffusion for pose-

guided person image synthesis. In CVPR, pages 6420–6429,
2024. 3

[11] Mi Luo, Zihui Xue, Alex Dimakis, and Kristen Grauman.
Put myself in your shoes: Lifting the egocentric perspective
from exocentric videos. In ECCV, pages 407–425, 2024. 1,
3

[12] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Int. Conf.
Mach. Learn., pages 8748–8763, 2021. 2

[13] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 2

[14] Javier Romero, Dimitris Tzionas, and Michael J Black. Em-
bodied hands: Modeling and capturing hands and bodies to-
gether. ACM TOG, 36(6), 2017. 2

[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241, 2015. 2

[16] Shinji Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE TPAMI, 13
(04):376–380, 1991. 2

[17] Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea
Vedaldi, Christian Rupprecht, and David Novotny. Vggt:
Visual geometry grounded transformer. arXiv preprint
arXiv:2503.11651, 2025. 2

[18] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
CVPR, pages 8798–8807, 2018. 3

[19] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: From error visibility
to structural similarity. IEEE TIP, 13(4):600–612, 2004. 3

[20] Jilan Xu, Yifei Huang, Baoqi Pei, Junlin Hou, Qingqiu Li,
Guo Chen, Yuejie Zhang, Rui Feng, and Weidi Xie. Egoexo-
gen: Ego-centric video prediction by watching exo-centric
videos. In ICLR, 2025. 1

[21] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
CVPR, pages 4578–4587, 2021. 3

[22] Zhengdi Yu, Shaoli Huang, Fang Chen, Toby P. Breckon, and
Jue Wang. Acr: Attention collaboration-based regressor for
arbitrary two-hand reconstruction. In CVPR, 2023. 2

[23] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, pages 586–595,
2018. 3


	Introduction
	Method
	Exocentric View Observation
	Egocentric View Reconstruction

	Experiments
	Setup
	Results

	Conclusion

