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Abstract

When interacting with objects, humans effectively rea-
son about which regions of objects are viable for an in-
tended action, i.e., the affordance regions of the object.
They can also account for subtle differences in object re-
gions based on the task to be performed and whether one
or two hands need to be used. However, current vision-
based affordance prediction methods often reduce the prob-
lem to naive object part segmentation. In this work, we
propose a framework for extracting affordance data from
human activity video datasets. Our extracted 2HANDS
dataset contains precise object affordance region segmen-
tations and affordance class-labels as narrations of the ac-
tivity performed. The data also accounts for bimanual ac-
tions, i.e., two hands co-ordinating and interacting with
one or more objects. We present a VLM-based affordance
prediction model, 2HandedAfforder, trained on the dataset
and demonstrate superior performance over baselines in
affordance region segmentation for various activities. Fi-
nally, we show that our predicted affordance regions are
actionable, i.e., can be used by an agent performing a task,
through demonstration in robotic manipulation scenarios.
Project-website: sites.google.com/view/2handedafforder

1. Introduction

When humans perceive objects, they understand different
object regions and can predict which object region affords
which activities [7], i.e., which object regions can be used
for a task. We wish our machines to have this ability, re-
ferred to in literature as “affordance grounding”. Affor-
dance grounding has several downstream applications, in-
cluding building planning agents, VR, and robotics. Affor-
dance grounding is especially important for robotics since
robots must reason about various actions that can be per-
formed using different object regions which is a crucial step
towards performing useful tasks in everyday, unstructured

Figure 1. A motivating example: When labeling affordances for a
task ‘Pour into bowl’, typical labeled affordances provided by an-
notators are not precise and reduce the problem to object part seg-
mentation. Alternatively, our affordance extraction method uses
the hand-object interaction sequence to get precise bimanual affor-
dance regions that are not just ‘conceptual’ but also ‘actionable’.

environments. For example, to pour into a bowl, the robot
should know that it should hold the bottle in a region close
to the center of mass of the bottle (Figure 1), i.e., a region
that affords pouring. Predicting such affordance regions is
challenging since it requires a fine-grained understanding of
object regions and their semantic relationship to the task.

Recent advances in large-language and multimodal mod-
els have shown impressive visual reasoning capabilities us-
ing self-supervised objectives [6, 23, 26]. However, there
is still a big gap in their ability to detect accurate object af-
fordance regions in images [18]. Moreover, most existing
state-of-the-art affordance detection methods [10, 15, 24,
25, 29] use labeled data [11, 16, 21, 22, 24] that lacks preci-
sion and is more akin to object part segmentation rather than
actionable affordance-region prediction. When humans in-
teract with objects, they are much more precise and use spe-
cific object regions important in the context of the task. An
example is provided in Fig. 1. For the task of pouring into
the bowl, part segmentation labels the entire bottom of the

https://sites.google.com/view/2handedafforder


Figure 2. Affordance extraction pipeline. Given a human activity video sequence and a single-frame object and hand masks, we first obtain
dense, full-sequence object and hand masks using a video mask-propagation network [3]. We then inpaint out the hands in the RGB images
using a video-based hand inpainting model [2]. This gives us an image with the objects reconstructed and un-occluded by the hands. With
the inpainted image and the original object masks, we use [27] to “complete” the object masks by again propagating the object masks to the
inpainted image. Finally, we can extract the affordance region masks for the given task as the intersection between the completed masks
and the hand masks. We also label the affordance class using the narration of the task.

bottle with the affordance ‘pour’. But, to pour correctly,
humans leverage the appropriate region of the bottle. More-
over, the affordances are inherently bimanual, i.e., the affor-
dance regions of the bowl and bottle are interconnected.

We argue that affordances should not be labeled but auto-
matically extracted by observing humans performing tasks,
e.g. in activity video datasets. We propose a method that
uses hand-inpainting and mask completion to extract affor-
dance regions occluded by human hands. This has several
advantages. First, by using this procedure, we are able to
obtain bimanual and precise affordances (Figure 1) rather
than simply predicting object parts. Second, it makes af-
fordance specification more natural since it is often easier
for humans to show the object region to interact with, rather
than label and segment it correctly in an image. Third, us-
ing human activity videos gives us diverse task-specific af-
fordances, with the affordance class label naturally coming
from the narration of what task is being done by the hu-
man. This makes our affordances task-oriented with natu-
ral language specification, unlike previous methods focused
on predicting task-agnostic interaction hotspots [1, 8].

2. Extraction and Learning of Bimanual Affor-
dances from Human Videos

2.1. Affordance Extraction from Human Videos
We use videos of humans performing tasks to extract pre-
cise affordance masks. This involves closely examining the
contact regions between the hands and objects. We pro-
pose a pipeline to extract affordances that leverages recent
advances in hand inpainting [2] and object mask comple-
tion [27, 28], providing the first bimanual affordance region

segmentation dataset. Moreover, we use the narration of the
task being performed as the affordance text label, obtaining
a diverse set of affordance classes for various objects.

We use videos from EPIC-KITCHENS [4], containing
∼100 hours of egocentric human videos in kitchens. We
use VISOR [5] annotations of the dataset, which contain
sparse hand-object mask segmentations and binary labels
for whether the hand is in contact with the object.To obtain
dense hand-object masks for entire video sequences, we use
a video-based mask propagation network [3].

With the hand and object masks available over the en-
tire video sequence, we obtain an un-occluded view of the
objects by inpainting out the hands. We use a video-based
hand inpainting model, VIDM [2], that uses 4 frames from
the sequence as input to inpaint the missing regions. This
sequence-based inpainting better reconstructs the target ob-
jects since the objects may be visible in another frame of
the sequence without occlusion. Inpainting provides us with
an un-occluded view of the objects. We then precisely seg-
ment these un-occluded objects in the inpainted image using
mask completion. For this, we use the segmentation masks
from the original image and prompt SAM2 [27] to propa-
gate these masks to the new inpainted image.To obtain the
final affordance region where the hand and object interact,
we can simply compute the intersection of the un-occluded
object masks and the hand masks (Fig. 2). For bimanual af-
fordances, we also classify into a bimanual taxonomy [14]
of unimanual left, unimanual right, and bimanual actions.

We extract a dataset of 278K images with affordance seg-
mentation masks, narration-based class-labels, and biman-
ual taxonomy annotations. We call our dataset 2HANDS,
i.e., the 2-Handed Affordance + Narration DataSet.



Figure 3. Affordance prediction network. Given an input image and task, we use a question asking where the objects should be interacted
for the desired task as a text prompt to a Vision-Language model (VLM). The VLM produces language tokens and a [SEG] token which is
passed to the affordance decoders. We also use a SAM [13] vision-backbone to encode the image and pass it to the affordance decoders.
The decoders predict the left hand and right hand affordance region masks as well as a taxonomy classification indicating whether the
interaction is supposed to be performed with the left hand, right hand, or both hands. The vision encoder is frozen, while the VLM
predictions are fine-tuned using LORA [12].

2.2. Task-oriented Bimanual Affordance Prediction

Reasoning segmentation, i.e., text-prompt-based segmen-
tation of full objects, is a difficult task. Segmentation of
precise object affordance regions is even more challeng-
ing. The complexity is further increased when consider-
ing bimanual affordances with multiple objects. To address
this challenge, we develop a model for general-purpose bi-
manual affordance prediction that can process both an input
image and any task prompt (e.g., ”pour tea from kettle”).
We call this model “2HandedAfforder.” We leverage re-
cent developments in reasoning-based segmentation meth-
ods [15, 19] and train a VLM-based segmentation model to
reason about the required task and predict the relevant af-
fordance region in the input image.

Inspired by reasoning segmentation methods such
as by Lai et al. [15], we use a Vision-Language
Model (VLM) [20], a LLaVa-13b, to jointly process the
input text prompt and image and produce language tokens
and a segmentation [SEG] token as output. While VLMs
excel at tasks such as visual question answering and im-
age captioning, they are not explicitly optimized for vision
tasks like segmentation, where accurately predicting pixel-
level information is key. Thus, to have a stronger vision-
backbone for our segmentation-related task, we use a mod-
ified version of SAM [13]. Given the combined embed-
ding provided by the VLM [SEG] token and SAM image
encoder, we use affordance decoders modeled after SAM-
style mask decoders to predict the affordances. We use two
mask decoders, generating separate affordance masks for
the left and right hands, respectively. Furthermore, we add a
prediction head to one of the decoders that takes the output
token as input and predicts the bimanual taxonomy: ‘uni-

manual left hand’, ‘unimanual right hand’, and ‘bimanual’
using a separate full-connected classifier decoder (Fig. 3).

The VLM is trained to generate a specific output to-
ken: a segmentation [SEG] token. Specifically, inspired by
LISA [15], we use question-answer templates to encapsu-
late the narration of the individual tasks in natural language,
e.g. “USER: [IMAGE] Where would you interact with the
objects to perform the action {action narration} in this im-
age? ANSWER: Use region: [SEG].” This [SEG] token en-
capsulates the general-purpose reasoning information from
the VLM for the task which is then used by the affordance
decoders. For the left and right hand mask decoders, we ini-
tialize the decoders with pre-trained SAM weights and train
them to predict segmentation masks using the encoded im-
age and [SEG] token as input. For the taxonomy classifier
decoder, as in [24], we pass the left mask decoder output
token through an MLP to predict whether the action should
be performed with the left hand, right hand, or both hands.

3. Experiments

3.1. ActAffordance Benchmark

To answer the first question of the accuracy of our ex-
tracted affordances in the 2HANDS dataset, we evaluate the
alignment of our extracted affordance masks with human-
annotated affordance regions. As mentioned in Sec. 2.1,
when humans label affordances, they often simply label ob-
ject parts and do not necessarily focus on the precise regions
of interaction of the objects [21, 24]. Moreover, the sec-
ond question regarding the accuracy of 2HandedAfforder is
non-trivial. Using only the masks in our 2HANDS dataset
as “ground truth” leads to a bias towards our own extracted



ActAffordance Benchmark
Model EPIC-KITCHENS EGO4D Combined

IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑
LISA [15] 0.048 0.056 298 260 0.053 0.038 0.098 336 257 0.084 0.044 0.050 303 255 0.047

LOCATE [17] 0.010 0.014 274 261 0.007 - - - - - - - - - -
AffLLM [25] 0.010 0.010 267 205 0.010 0.015 0.016 229 226 0.014 0.012 0.013 287 225 0.012
2HAffCLIP 0.032 0.077 359 317 0.068 0.023 0.050 306 250 0.047 0.026 0.064 341 292 0.059

2HAff 0.064 0.125 241 185 0.104 0.051 0.137 292 227 0.105 0.058 0.130 262 202 0.104
AffExtract 0.136 0.334 199 169 - 0.253 0.541 163 121 - 0.185 0.420 184 145 -

Table 1. Comparison of our models and baseline methods on the ActAffordance benchmark. Performance is evaluated separately on the
EPIC-KITCHENS and EGO4D splits, as well as on the combined benchmark. The reported metrics include IoU (Intersection over Union),
Precision, HD (Hausdorff Distance), Dir. HD (Directional Hausdorff Distance), and mAP (Mean Average Precision). For mAP, we average
over five different thresholds, and the values for the other metrics correspond to the highest scores obtained across these thresholds. We
also run our affordance extraction method, AffExtract, as a measure of data quality and alignment with the benchmark annotations.

stir vegetables pour into cup pick up pot open pot open bottle

Figure 4. Examples of different manipulation tasks executed on a bimanual Tiago++ robot. Red and green masks denote left and right
hand affordance mask predictions, respectively. We segment the task-specific object affordance regions, propose grasps for these regions,
and use pre-designed motion primitives to execute manipulation tasks. Videos are available at sites.google.com/view/2handedafforder.

affordances. Therefore, we propose a novel benchmark
called “ActAffordance” to evaluate both the dataset qual-
ity and the predicted affordances. Specifically, we evalu-
ate the alignment of our affordances with the affordances
annotated by humans who are shown the full interaction
video sequence. Annotators predicted ALL possible in-
teraction regions since affordance prediction is inherently
multi-modal—for instance, when closing a fridge, a hu-
man might choose any point along the door length. The
benchmark contains unimanual and bimanual segmentation
masks for 400 activities from EPIC-KITCHENS [4] and
Ego4D [9], with no overlap with the data used in 2HANDS.

4. Results

Extraction quality & Benchmark performance:
Table 1 shows the quantitative results. The high pre-
cision of AffExtract shows a reasonably good alignment
with the human-annotated segmentations from the bench-
mark and meaningful affordance region extraction. The
IoU scores are relatively lower, with an average of 0.185,
showing the challenge of the task when compared against
human-level object understanding. Since ours is the first
method to perform bimanual affordance mask detection us-

ing text prompts, we adapt baselines which includes a SOTA
text-based reasoning segmentation baseline, LISA [15].
2HandedAfforder achieves the best results across all met-
rics. LISA is the next best method since it accurately seg-
ments the correct object in the scene, resulting in a natu-
ral overlap with the ground truth. This demonstrates the
power of reasoning segmentation for the challenging task
of prompt-based affordance prediction. Though our models
were not trained on any Ego4D data, their performance on
Ego4D is still reasonable and often better than the EPIC-
KITCHENS split. The IoU scores are low across the board
for all methods, indicating further room for improvement
on this challenging task.

Real-world Affordance Prediction on a Robot:

We conduct robotic manipulation experiments with vari-
ous objects using a bimanual Tiago++ robot in a realis-
tic kitchen environment. We deploy our 2HandedAfforder
model for affordance region segmentation inference based
on task prompts such as ‘pour into cup’. Integrating our
affordance prediction into the grasping pipeline leads to
greater robot task success. Examples of different ma-
nipulation tasks are shown in Figure 4 and in videos at
sites.google.com/view/2handedafforder.

https://sites.google.com/view/2handedafforder
https://sites.google.com/view/2handedafforder
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