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Abstract

Deep reinforcement learning (deep RL) has recently
achieved significant advancements, enabling agents to
tackle complex tasks such as video games, locomotion,
and manipulation directly from high-dimensional image
pixels. Despite these successes, deep RL typically relies
on domain-specific reward functions, which require expert
knowledge. In this paper, we propose a goal-conditioned
visual RL method that effectively learns dexterous object
manipulation with a robotic hand using a goal image and
limited demonstrations, without relying on domain-specific
dense reward functions. Our approach leverages limited
demonstrations to pre-train a policy, which is then op-
timized through balanced sampling between the demon-
strated and online interaction data. During online inter-
action, it replaces human-specified dense reward functions
with goal-conditioned rewards generated by a goal image
and the VIP model. Experimental results demonstrate that
our method achieves superior sample efficiency in dexter-
ous object manipulation tasks with a robotic hand, even in
environments with sparse or no rewards.

1. Introduction

Deep reinforcement learning (RL) has emerged as a power-
ful technique, capable of learning optimal policies from in-
teraction data without the need for an explicit, hand-coded
dynamics model. This approach is versatile, handling both
discrete and continuous actions while utilizing either low-
dimensional state vectors or high-dimensional sensor read-
ings [6, 8, 10, 12, 14–16, 20]. Despite its promise, apply-
ing deep RL to real-world scenarios, such as robotic learn-
ing, presents significant challenges [2], including the diffi-
culty of reliably tracking the complete system state and the
complexity of crafting informative reward functions. Al-
though recent advancements in data augmentation and self-
supervised learning have improved the sample efficiency of

policy learning from image observations [9, 17–19, 21], re-
ward engineering remains a bottleneck. This process often
requires domain-specific knowledge and lacks scalability to
physical systems. Consequently, there is a pressing need to
enhance the exploration capabilities of RL agents in envi-
ronments with sparse or no rewards [4, 7].

In this paper, we introduce a goal-conditioned visual RL
method that effectively learns dexterous object manipula-
tion with a robotic hand from image observations, even
in environments with sparse or no rewards. Our method
leverages a goal image and the value-implicit pre-training
(VIP) model [11] to generate goal-conditioned reward sig-
nals directly from image observations, eliminating the need
for human-specified reward functions. The VIP model pro-
vides a self-supervised pre-trained visual representation ca-
pable of generating dense and smooth reward functions
for unseen robotic tasks. Our approach begins with lim-
ited demonstrations to pre-train a policy, which is then op-
timized by goal-conditioned reward signals through bal-
anced sampling between online interactions and demon-
strated data. This method demonstrates superior sample ef-
ficiency on goal-image-specified robotic hand manipulation
tasks from Adroit [13], achieving significant results within
an extremely limited budget of 100K environment steps.
Our findings reveal the potential of goal-conditioned visual
RL in environments with sparse or no rewards.

2. Methodology

Our method leverages a goal image and a limited number
of demonstrations to effectively learn dexterous object ma-
nipulation with a robotic hand in environments with sparse
or no rewards. The process begins by using these limited
demonstrations to pre-train a policy. This pre-trained policy
is then optimized through goal-conditioned rewards gener-
ated by combining the goal image and the VIP model, while
employing balanced sampling between demonstrated and
online interaction data. Notably, in this study, we employed
only five demonstrations per task. Fig. 1 provides an illus-
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Figure 1. Goal-conditioned visual reinforcement learning with limited demonstrations. Our method first pre-trains a policy using limited
demonstrations and then optimizes it with goal-conditioned rewards generated from a goal image and the VIP model. The optimization
process incorporates balanced sampling between demonstrated and online interaction data, enabling effective learning in environments
with sparse or no rewards.

tration of our method, and the full training procedure for
goal-conditioned visual RL is summarized in Algorithm 1.

Algorithm 1 Goal-conditioned visual RL using demos
// Phase 1: Policy pre-training
for step t = 0...T do

Sample state-action pairs: {st, at} ∼ Ddemo

Train πθ from Ddemo using BC.
// Phase 2: Online learning
while not converged do

Choose action: at ∼ πθ(st)
Step environment: st+1 ← env(at)
Fill in reward: rt ← rVIP

t (+ rsparse
t )

Add transition (st, at, rt, st+1) to Donline.
Train πθ from Ddemo and Dinteraction using TD-MPC.

2.1. Policy Pre-training

We utilize a limited number of demonstrations to pre-train a
policy using behavior cloning (BC) [3], thereby enhancing
sample efficiency by establishing an inductive prior through
this policy pre-training phase. BC is a straightforward yet
effective approach for training a policy with expert demon-
strations, often yielding impressive performance.

BC We employ BC, a widely used technique in imitation
learning, to establish an inductive prior. BC trains a parame-
terized policy, πθ : S → A, with the objective of predicting
expert actions based on corresponding observations. How-
ever, BC has an inherent limitation: it cannot surpass the
performance of the expert, as it lacks an intrinsic measure of
task success. This shortcoming highlights the need to com-
bine demonstrations with a sample-efficient RL approach to
achieve superior performance.

2.2. Online Learning

We utilize the model-based RL method TD-MPC [5] to op-
timize the pre-trained policy through online interactions,
chosen for its state-of-the-art performance in sample effi-
ciency among online RL methods. Instead of relying on
human-specified dense reward functions, we generate goal-
conditioned rewards using a goal image and the VIP model
during online interactions. To further enhance sample effi-
ciency, we implement balanced sampling between demon-
strated and online interaction data.

TD-MPC We employ TD-MPC as a model-based RL al-
gorithm. TD-MPC performs local trajectory optimization
in the latent space of a learned implicit (decoder-free) world
model. Specifically, it optimizes the following five compo-
nents:

Encoder z = hθ(s)

Latent dynamics z′ = dθ(z, a)

Reward predictor r̂ = Rθ(z, a) (1)
Terminal value q̂ = Qθ(z, a)

Policy prior â = πθ(z)

where s represents a state, a represents an action, and z
represents a latent representation.

The policy πθ designed to guide planning towards high-
return trajectories and is optimized to maximize temporally
weighted Q-values. The remaining components are jointly
optimized to minimize latent state prediction errors, reward
prediction errors, and TD-errors. The overall objective is
formulated as:

L(θ) .
= E(s,a,r,s′)0:H∼D

[
H∑
t=0

λt
(
ehd + eR + eQ

)]
, (2)
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Figure 2. Object manipulation tasks using the Shadow dexterous
hand in Adroit. (a) adroit-pen, (b) adroit-hammer, and (c) adroit-
door.

where ehd = ||dθ(zt, at) − sg(hθ(s
′
t))||22 represents latent

state prediction errors, eR = ||Rθ(zt, at) − rt||22 represents
reward prediction errors, and eQ = ||Qθ(zt, at) − (rt +
γQθ̄(z

′
t, πθ(z

′
t))||22 represents TD-errors. Here, θ̄ denotes

an exponential moving average of θ.

VIP We utilize the VIP model to generate smooth and
dense reward signals from image observations based on
a given goal image. The VIP model learns the optimal
goal-conditioned value function through a dual offline goal-
conditioned RL formulation, defined as:

L(ϕ) .
= Ep(g)

[
(1− γ)Eµ0(s;g)

[
− Vϕ(s; g)

]
+

logE(s,s′;g)∼D
[
exp

(
− Vϕ(s; g)− (1− γVϕ(s

′; g))
)]]

,

(3)

where Vϕ(s; g) = −||ϕ(s) − ϕ(g)||2 denotes the goal-
conditioned value function, parameterized implicitly as the
L2 distance in the embedding space by ϕ; g represents
a goal image; p(g) indicates the goal distribution; and
µo(s; g) refers to the goal-conditioned distribution of the
initial image. The implicit value function effectively pro-
vides a dense reward signal conditioned on the specified
goal.

3. Experiments
We present experimental results on three dexterous object
manipulation tasks using a robotic hand from Adroit. The
specific tasks include ‘adroit-pen,’ ‘adroit-hammer,’ and
‘adroit-door.’

Setup The tasks involve object manipulation with the
Shadow dexterous hand [1], as illustrated in Fig. 2. In these
experiments, we consider learning from image observations
and focus on goal-image-specified tasks, where each task is
specified via a goal image. During online interaction, VIP-
generated reward signals are used to replace the human-
engineered (simulation-provided) dense rewards. We eval-
uate our method under a limited budget of 100K online in-
teractions.

Baseline As a baseline, we consider training TD-MPC
with sparse rewards, substituting the human-specified
(simulation-provided) dense rewards.

Results The experimental results, presented in Fig. 3,
evaluate five different configurations: (a) baseline, (b)
baseline with policy pre-training, (c) baseline with pol-
icy pre-training and VIP-generated rewards, (d) baseline
with policy pre-training, VIP-generated rewards, and bal-
anced sampling, and (e) baseline with policy pre-training,
VIP-generated rewards, and balanced sampling, but elim-
inating sparse rewards. Our findings reveal that TD-MPC
struggles to succeed in dexterous object manipulation tasks
under sparse reward conditions, despite its state-of-the-art
sample efficiency in environments with human-specified
dense rewards. Although pre-training the policy with lim-
ited demonstrations offers some advantages, its overall ef-
fect remains marginal. Notably, VIP-generated rewards sig-
nificantly accelerate the RL training process in the ‘adroit-
hammer’ task, though they are less effective in other tasks.
Balanced sampling emerges as a critical factor for en-
hancing sample efficiency. Finally, training TD-MPC ex-
clusively with VIP-generated rewards achieves satisfactory
success rates in the ‘adroit-door’ task, even in reward-free
environments, although this approach generally falls short
in other scenarios.

4. Conclusion

In this study, we introduced a goal-conditioned visual RL
method utilizing limited demonstrations. Our approach be-
gins by pre-training a policy with these limited demonstra-
tions to establish an inductive prior, and then optimizes the
pre-trained policy through goal-conditioned rewards gener-
ated by a goal image and the VIP model, eliminating the
need for human-specified reward functions. Additionally,
balanced sampling between demonstrated and online inter-
action data is employed to enhance sample efficiency. Our
results show that our method achieves satisfactory success
rates using only a goal image, even in environments without
explicit rewards. Furthermore, the success rates improve
when sparse rewards are available. Future work will explore
unsupervised RL approaches to further enhance sample ef-
ficiency by pre-training a world model in an unsupervised
manner prior to policy optimization.

Acknowledgments

This work was supported by Electronics and Telecom-
munications Research Institute (ETRI) grant funded by
the Korean government. [24ZR1100, A Study of Hyper-
Connected Thinking Internet Technology by autonomous
connecting, controlling, and evolving ways].



Figure 3. Experimental results for three dexterous object manipulation tasks, averaged over four seeds. Shaded areas indicate 95%
confidence intervals.
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