
EMAG: Ego-motion Aware and Generalizable
2D Hand Forecasting from Egocentric Videos

Masashi Hatano1 , Ryo Hachiuma2 , and Hideo Saito1

1 Keio University
2 NVIDIA

Abstract. Predicting future human behavior from egocentric videos is a
challenging but critical task for human intention understanding. Existing
methods for forecasting 2D hand positions rely on visual representations
and mainly focus on hand-object interactions. In this paper, we inves-
tigate the hand forecasting task and tackle two significant issues that
persist in the existing methods: (1) 2D hand positions in future frames
are severely affected by ego-motions in egocentric videos; (2) prediction
based on visual information tends to overfit to background or scene tex-
tures, posing a challenge for generalization on novel scenes or human
behaviors. To solve the aforementioned problems, we propose EMAG,
an ego-motion-aware and generalizable 2D hand forecasting method.
In response to the first problem, we propose a method that considers
ego-motion, represented by a sequence of homography matrices of two
consecutive frames. We further leverage modalities such as optical flow,
trajectories of hands and interacting objects, and ego-motions, thereby
alleviating the second issue. Extensive experiments on two large-scale
egocentric video datasets, Ego4D and EPIC-Kitchens 55, verify the ef-
fectiveness of the proposed method. In particular, our model outperforms
prior methods by 1.7% and 7.0% on intra and cross-dataset evaluations,
respectively. Project Page: https://masashi-hatano.github.io/EMAG/
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1 Introduction

With the emergence of wearable devices such as smart glasses and intelligent
helmets, there has been growing interest in the analysis of egocentric videos. In
recent years, large-scale egocentric vision datasets such as EPIC-Kichtens [8, 9]
and Ego4D [16] have been introduced to catalyze the next era of research in first-
person perception and provide a diverse range of tasks for investigation, including
action recognition [15, 36, 53], human body pose estimation [26, 51, 52], audio-
visual understanding [21, 41], action anticipation [14, 38], and natural language
queries [40].

Future forecasting is one of the major categories, including the anticipation
of the camera wearer’s future actions and the prediction of human movements.
This capability has immediate applications in AR/VR [56,57] and human-robot
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interactions [39,55] as both fields benefit from understanding the camera wearer’s
actions or behaviors. Among the tasks in future forecasting, hand forecasting
has been recognized as particularly challenging due to severe ego-motion, which
affects the 2D hand positions in future frames.

Camera motion (ego-motion) 𝑡
Fig. 1: The presence of ego-motion in first-
person videos significantly affects the dy-
namic movement of the camera position.
Since the camera is part of the wearer’s
body, a variety of views can be captured
even in a short period of time.

Recent 2D egocentric hand fore-
casting approaches [16, 30, 31] lever-
age visual feature representations ex-
tracted from input RGB videos us-
ing 2D or 3D Convolutional Neural
Networks (CNNs) for the hand fore-
casting task. For example, the method
proposed in the Ego4D dataset [16]
uses a simple I3D network [5] and
regresses the future 2D hand coordi-
nates. Meanwhile, the Object Centric
Transformer (OCT) [31] is a method
that jointly predicts hand motions
and object contact points from RGB video features extracted with BNIncep-
tion [48] and the hand/object bounding boxes.

Although the 2D hand forecasting task has been widely studied, two critical
issues still remain in the previous works: the accuracy and generalization per-
formance against unseen data, both of which are crucial for practical scenarios.
First, the 2D hand position in future frames is heavily influenced by the head
motion of the camera wearer, also known as ego-motion. As illustrated in Fig. 1,
body and head motions cause frequent view changes even in a short period of
time, yet the previous approaches have not explicitly considered ego-motion for
predicting 2D hand positions. Second, the performance of RGB-based prediction
approaches significantly drops when the video feature distribution (i.e. domain)
diverges from that of the training set [25, 54]. This performance drop is crucial
for the 2D egocentric hand forecasting task since the camera is not situated at
a fixed location. For instance, performance may vary if the egocentric videos are
captured in different textured environments (e.g ., outdoor vs. indoor), or if the
wearer performs different actions from the training.

This work proposes EMAG, an ego-motion-aware and generalizable 2D hand
forecasting method. This approach capitalizes on the incorporation of ego-motion
information to enhance the accuracy of the hand forecasting task. Additionally,
we employ multiple modalities to mitigate susceptibility to overfitting in back-
grounds or scene textures. We aim to achieve more robust predictions in settings
where camera wearers engage in a diverse range of tasks such as cooking and
gardening.

To address the first challenge, we propose leveraging a sequence of homogra-
phy matrices as ego-motion and anticipating them on future frames. Given that
hand positions in future frames are affected by future ego-motion, explicitly
forecasting ego-motion as an auxiliary task enhances the accuracy of predict-
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ing future hand positions, particularly in egocentric videos where head motions
occur frequently.

To alleviate the second issue, instead of primarily relying on visual fea-
tures for estimating 2D hand positions, we leverage modalities such as optical
flow, hand/object positions, and ego-motion information, using hand motions
as the primary features for hand forecasting. This approach reduces reliance on
appearance-based features, as these modalities are free from appearance-based
biases [36]. Consequently, the model’s generalizability is enhanced, ensuring ro-
bust performance even when distribution gaps exist between the training and
test data.

We extensively evaluate the proposed method on two large-scale egocentric
datasets, Ego4D [16] and EPIC-Kitchens 55 [8]. The performance of the proposed
method, along with that of previous state-of-the-art forecasting approaches, is
assessed under two settings: the intra-dataset setting and the cross-dataset set-
ting. In the cross-dataset setting, the model is evaluated on a different dataset
from training to verify the generalization performance against unseen scenes or
actions. As a result, our method outperforms the previous approaches in both
two settings (1.7% and 7.0% improvement with intra-dataset and cross-dataset
settings, respectively). Moreover, we conduct various ablation studies on the
proposed input modalities and loss components.

In summary, our contributions are as follows:

– We are the first to investigate the potential benefits of incorporating ego-
motion, which is critical in the 2D hand forecasting task.

– We propose a simple but effective approach, EMAG, that considers ego-
motion, represented by a sequence of homography matrices of two consecu-
tive frames. In addition, our method utilizes multiple modalities to mitigate
overfitting to scene textures.

– We conduct extensive experiments on two large-scale egocentric datasets,
Ego4D and EPIC-Kitchens 55. The experimental results verify the outper-
formance of the proposed method over the previous approaches through two
different experimental setups: intra-dataset and cross-dataset. Especially, the
method shows strong performance with cross-dataset in which the training
and test datasets differ.

2 Related Work

2.1 Egocentric Video Understanding

Video understanding is one of the central tasks in the computer vision field.
Various video understanding methods are well-established thanks to large-scale
datasets [17, 24, 45] collected from internet sources (e.g . YouTube). The videos
in these large-scale datasets are mostly captured from an exocentric camera
(third-view video), such as a surveillance or a hand-held camera.

On the other hand, analyzing egocentric video (first-view video) captured by
wearable cameras has become an active area of research in recent years [7,27,29,
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35, 37, 58]. Compared with exocentric videos, egocentric videos provide distinct
viewpoints of surrounding scenes and actions driven by the camera position
holding on the observer. Therefore, egocentric video analysis can be helpful for
various applications, such as AR/VR [56,57] or medical image analysis [4, 12].

Multiple large-scale egocentric video datasets [8,9,16,28,32] have been pro-
posed in response to the demand for egocentric video analysis. These datasets
have played a pivotal role in advancing research on egocentric video understand-
ing, encompassing tasks such as activity recognition [15, 36, 53], human-object
interaction [30, 31, 59], action anticipation [14, 38], human body pose estima-
tion [26,51,52], and audio-visual understanding [21,41]. In this work, we explore
one of the challenging tasks in egocentric video analysis, 2D hand forecasting.

2.2 Hand Forecasting from Egocentric Videos

To predict future hand positions, traditional tracking or sequential methods,
such as Kalman Filter (KF) [23], Constant Velocity Model (CVM) [43], and
Seq2Seq [47], have been commonly employed for trajectory prediction. These
methods often rely solely on trajectories of hand positions and do not effectively
leverage the context of scenes without visual information, resulting in suboptimal
performance. To effectively leverage visual information, the baseline method for
hand forecasting, which was proposed as a benchmark along with the Ego4D [16]
dataset, utilized I3D [5], a method that is known for its outstanding performance
to extract spatial and temporal information.

Moreover, several studies have focused on hand-object interactions to explore
the relationship between meaningful human body movements and future repre-
sentations. FHOI [30] is the first work to incorporate the future trajectory of
hands for action anticipation in egocentric videos. Building upon this, OCT [31]
is an approach that integrates hand-object interactions into the prediction pro-
cess.

However, neither of these approaches explicitly considers ego-motion, which
plays a crucial role in accurately predicting future hand positions in 2D image
coordinates, as future hand positions are heavily influenced by future ego-motion.
In contrast to previous works, we explore the potential benefits of integrating ego-
motion information to enhance the capability of predicting future hand positions
even in the presence of severe ego-motion.

3 Method

The proposed architecture is built upon the original Transformer [50]. It inputs
multiple modalities and predicts future hand positions and ego-motions. We first
introduce the egocentric 2D hand forecasting task (Sec. 3.1). Then, we introduce
our proposed method, including pre-processing (Sec. 3.2), an encoder (Sec. 3.3),
our hand position and ego-motion predictors (Sec. 3.4), and our training objec-
tive (Sec. 3.5). Fig. 2 provides an overview of our approach.
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Fig. 2: The architecture of the proposed method. Given input egocentric video frames,
we pre-process them and obtain multiple modalities, including RGB and optical flow,
detected bounding boxes of objects/hands, and homography matrices of adjacent
frames. We train a single Transformer encoder and two Transformer decoders with
MLP heads for hand and ego-motion prediction.

3.1 Problem Definition

The task is to predict future hand positions of the camera wearer in 2D image
coordinates on future frames, followed by the definition on Ego4D [16]. Given
an input egocentric video V = {I1, . . . , IT } with an observation time length
T , where IT represents the last observation frame. Our goal is to predict future
hand coordinates h = {hT+1, . . . ,hT+F } for the future time horizons F . At each
time step t, ht consists of left/right-hand positions in the 2D image coordinate
system on the frame It.

3.2 Pre-processing

Our proposed method inputs three types of input modalities: trajectory informa-
tion, global information, and ego-motion information. We pre-process an input
video to obtain these three modalities as follows.
Trajectory information. Trajectory information consists of the sequential 2D
positions of the bounding boxes of hands and objects. To obtain bounding boxes
for both hands and objects for each frame, we apply an egocentric hand-object
detector [44], which detects the left and right hand and objects separately. We
use the following bounding boxes: left hand, right hand, and objects detected
with a top-k confidence score.
Global information. Global information consists of RGB frames and optical
flow. The optical flow can be estimated from two consecutive RGB frames via
an off-the-shelf optical flow estimator, such as RAFT [49] or FlowFormer [22].



6 M. Hatano et al.

Ego-motion information. The ego-motion is represented by a sequence of ho-
mography matrices, which encapsulate the transformation between consecutive
frames. Generally, a homography between images taken from two distinct view-
points depends on the intricate 3D arrangement of the captured scene. Nonethe-
less, given the relatively small magnitude of the translation vector connecting
consecutive frames in the context of first-person videos, a homography does not
depend on the 3D structure of the scene but solely on the rotation between the
two viewpoints.

The process of estimating the homography matrix involves two key stages:
the identification of matching points between frames and the determination of a
homography matrix that minimizes the error. The initial step entails identifying
matching points, a task facilitated by using previously estimated optical flow,
which characterizes the pixel displacement between frames. For the second step,
we apply the RANSAC algorithm [11], which is known as a robust iterative
algorithm, to estimate the homography parameters.

3.3 Encoder

Tokenization. After pre-processing all input modalities, each modality is trans-
formed into a token to be encoded in a single Transformer encoder. For each
detected bounding box (top-left and bottom-right coordinates) at time step t, it
is transformed into a token xt

i by a shared linear layer, which maps R4 → RC ,
where i represents either of the left hand, right hand, or objects detected with
a top-k confidence score, and C denotes the dimension size of each token. As
for the global information, we use two 2D CNNs to extract the features of each
RGB and flow frame and then pool the extracted features in the spatial direction
by global average pooling (GAP). The pooled features are denoted as xt

rgb and
xt

flow. Similar to the trajectory information, each homography matrix is trans-
formed into a token xt

ego by a linear layer, which maps R9 → RC . The 3 × 3
homography matrix is flattened before passing through the linear layer.
Index encoding. As there are various tokens in terms of modality type and
time, two index encodings, the modal index embedding and time index embed-
ding, are employed. The learnable position embedding is employed for the modal
index embedding. Also, we adopt the time index encoding, which replaces the
position in the original sinusoid positional encoding [50] with a time index (frame
number).
Transformer encoder. We use a single Transformer encoder E to encode mul-
tiple input modalities across multiple time steps via self-attention mechanisms:

z1
m1

, z1
m2

, . . . ,zT
mM

= E(x1
m1

,x1
m2

, . . . ,xT
mM

), (1)

where xt
mj

is the token of the mj-th modality at the time step t, M denotes
the number of input modality types, and zt

mj
is the output token from the

Transformer encoder E .
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3.4 Hand Position and Ego-motion Predictors

We use two Transformer decoders, the hand decoder (Dhand) and the ego-motion
decoder (Dego), conditioned on the features from the encoder in an autoregressive
manner. Finally, the decoded feature for each future time step is fed into two
MLP heads, Mhand and Mego, to predict the hand position and ego-motion for
each time step.
Transformer decoder. For the hand Transformer decoder, the encoded left-
hand token and the right-hand token of the last observation time T , zT

left and
zT
right, are used as the key and the value, and a learnable parameter is used

as a hand learnable token phand for the query of the first forecasting time step
(qT

hand = phand):
qT+f

hand = Dhand(q
T
hand, . . . , q

T+f−1
hand ), (2)

where qT+f
hand represents the decoded tokens for the future time step T + f, f =

{1, . . . , F}. We perform the same operation for the ego-motion Transformer de-
coder. The difference is the key, value, and query. The key and value stem from
the encoded ego-motion features at the last observed time step T , zT

ego, and the
query is a learnable parameter for ego-motion pego (= qT

ego):

qT+f
ego = Dego(q

T
ego, . . . , q

T+f−1
ego ). (3)

MLP head. We use multi-layer perceptrons (MLP), which take the decoded
features from the Transformer decoder at each future time step for both hand
position and ego-motion prediction. Mhand predicts the coordinates of the left
and right hands ĥT+f at the future time step T + f . Similarly, Mego predicts
the nine elements of the homography matrix êT+f :

ĥT+f = Mhand(q
T+f
hand), (4)

êT+f = Mego(q
T+f
ego ). (5)

Note that the weights of each MLP head (Mhand and Mego) are shared for each
time step.

3.5 Training Objective

In our training process, we use two types of losses: the hand forecasting loss
Lhand and the ego-motion (nine elements of the homography matrix) estimation
loss Lego.
Hand forecasting loss. We adopt the self-adjusting smooth L1 loss, which was
introduced in RetinaMask [13], as the objective function for hand forecasting:

li =

{
0.5wi(hi − ĥi)

2/β, |hi − ĥi| < β

wi(|hi − ĥi| − 0.5β), otherwise
(6)
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Lhand =
1

4F

∑
i

li, (7)

where hi is a i-th element of a vector representing the x, y ground truth coordi-
nates of the left/right hands on F future frames h ∈ R4F , ĥ denotes predicted
future hand coordinates, and β is a control point that mitigates over-penalizing
outliers. If the hand is not observed in future frames, we pad 0 into the ĥ and
adopt a binary mask w ∈ R4F to prevent gradient propagation for these unob-
served instances.
Ego-motion estimation loss. We employ the L2 loss for ego-motion estimation
loss:

Lego =
1

9F

∑
i

(ei − êi)
2, (8)

where e ∈ R9F is a vector representing the elements of homography matrices
on F future frames. Lhand and Lego are linearly combined with a balancing
hyperparameter α for the final training loss:

Ltotal = Lhand + αLego. (9)

4 Experiments

4.1 Datasets

EPIC-Kitchens 55 [8]. EPIC-Kitchens 55 is the dataset that only includes the
daily activities videos in the kitchen. It comprises a set of 432 egocentric videos
recorded by 32 participants in their kitchens using a head-mounted camera. We
use the train/val split provided by RULSTM [14].
Ego4D [16]. The Ego4D dataset is the most recent large-scale egocentric video
dataset. It contains 3,670 hours of egocentric videos of people performing diverse
tasks, such as farming or cooking, and is collected by 931 people from 74 locations
across nine different countries worldwide. We follow the same train/val split
protocol provided by Ego4D [16].

Followed by the previous work [31], we employ the egocentric hand-object
detector [44] with the same setup as the previous work and consider the center
of detected hand bounding boxes as the ground truth hand positions for both
left and right hands.

4.2 Implementation Details

Experimental setup. We sample T = 8 frames at 4 FPS (frames per second) as
input observations and forecast 1 second with the future time step F = 4 on both
EPIC-Kitchens 55 and Ego4D. We use the pre-trained ResNet-18 [19] on Ima-
geNet [10] as the backbone to extract RGB and optical flow features. We adopt
the hand and object detector from the egocentric video [44] to detect left/right
hand and object bounding boxes in each input frame, and FlowFormer [22] is
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used to estimate the optical flow between consecutive frames. We standardize
RGB, optical flow, and ego-motion inputs using means and standard deviations
of input modalities on the training dataset. Note that the estimated homogra-
phy matrices are normalized so that the element in the third row and the third
column is one before standardization.
Network architecture. We use the dimension size of a token C = 512, k = 2
for the top-k confidence score with the threshold of 0.5, and set the number of
blocks in the encoder and decoder to 2. Each block has 8 attention heads in the
encoder and decoder. Our MLPs for hand and ego-motion prediction consist of a
linear layer, an activation function of ReLU [1], a Dropout [46] layer, and a final
linear layer that outputs the hand positions and ego-motion at future frames.
Optimization. We train the model for 30 epochs using the AdamW opti-
mizer [34], with a peak learning rate of 2e− 4, linearly increased for the first 5
epochs of the training and decreased to 0.0 until the end of training with cosine
decay [33]. We use weight decay of 1e− 3 and a batch size of 64. Regarding the
parameters for the loss function, we empirically adapt the control point β = 5.0
in Eq. (6), and the loss weight of α, used in Eq. (9), is set to 1.

4.3 Evaluation Metrics

The distance between the predicted and ground truth positions in 2D image
space, measured in pixels, is used to evaluate future hand position prediction per-
formance. Specifically, we adopt traditional metrics of trajectory prediction [2,
6, 18]: average displacement error and final displacement error. Note that the
metric is calculated using an image height scale of 256 px.
Average Displacement Error (ADE). ADE is calculated as the l2 distance
between the predicted future hand positions and the ground truth positions in
pixel averaged over the entire future time steps and both left and right hands.
Final Displacement Error (FDE). FDE measures the l2 distance between
the predicted future hand positions and ground truth positions at the last time
step and is averaged over two hands.

4.4 Comparison Methods

We compare with the following methods:

– CVM [43]. The Constant Velocity Model (CVM) is a simple but effective
trajectory prediction method based on the assumption that the most recent
relative motion is the most relevant predictor for the future trajectory. We
compute the velocity (vx, vy) between t = T − 1 and t = T for each hand
(right, left), and future hand positions for t = {T+1, ..., T+F} are forecasted
using (vx, vy).

– KF [23]. The Kalman Filter is an algorithm for estimating a dynamic sys-
tem’s state based on noisy measurements. It tracks the center of the bounding
boxes of the hands with its scale and aspect ratio. Our implementation is
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Table 1: Intra-dataset evaluation. We assess the performance of future hand fore-
casting on two large-scale egocentric datasets, Ego4D and EPIC-Kitchens 55. In terms
of input modalities, the symbols Th, To, Gr, Gf , E represents trajectory information of
hands and objects, global information of RGB and optical flow, and ego-motion in-
formation, respectively. Note that no backbone is used in CVM, KF, and Seq2Seq as
these methods predict based on past trajectories and do not input RGB or optical flow
frames. The best values are shown in bold, and the second best values are shown with
underline.

Method Input Modality Backbone
Ego4D EPIC-Kitchens 55

ADE ↓ FDE ↓ ADE ↓ FDE ↓

CVM [43] Th - 108.11 143.23 141.70 155.40
KF [23] Th - 71.23 72.87 70.58 75.60
Seq2Seq [47] Th - 55.91 60.72 62.24 67.85
OCT [31] Th, To, Gr BN-Inception 49.40 54.73 53.85 59.06
I3D + Regression [16] Gr 3D ResNet-50 49.27 53.04 49.64 54.83
Ours Th, To, Gr, Gf , E 2D ResNet-18 48.99 52.83 48.78 54.03

based on the code provided by SORT [3]3, which adopts a Kalman Filter to
track the center of bounding boxes.

– Seq2Seq [47]. Seq2Seq employs Long Short-Term Memory (LSTM) [20] to
encode temporal information in the observation sequence and decode the
target location of the hands. In our implementation, we adopt the embedding
size of 512, the hidden dimension of 256, and the teacher forcing ratio of 0.5
during training.

– OCT [31]. OCT simultaneously predicts contact points and the hand trajec-
tory. It takes RGB features extracted by BNInception [48], bounding boxes
of hands and objects, and their cropped visual features as input. We mod-
ified the model not to predict the contact point for a fair comparison. Our
implementation of this model is based on the official implementation4.

– I3D + Regression [16]. This method is proposed as a benchmark for hand
forecasting in the Ego4D dataset. The model is trained with the official hand
forecasting code5.

The first two traditional approaches predict based only on past trajectories
without training. On the other hand, the last three methods above are recent
advanced learning-based approaches in the hand forecasting task.

4.5 Hand Forecasting Accuracy Comparison

Intra-dataset evaluation. We compare the performance of hand forecasting
with the prior methods on two large-scale egocentric datasets. Tab. 1 shows
3 https://github.com/abewley/sort
4 https://github.com/stevenlsw/hoi-forecast
5 https://github.com/EGO4D/forecasting

https://github.com/abewley/sort
https://github.com/stevenlsw/hoi-forecast
https://github.com/EGO4D/forecasting
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Table 2: Cross-dataset evaluation. A → B in the first row indicates that the models
are trained on the training set of dataset A and tested on the validation set of dataset
B. We conduct two cross-dataset evaluations: (1) trained on EPIC-Kitchens 55 and
evaluated on Ego4D and (2) trained on Ego4D and evaluated on EPIC-Kitchens 55.

Method
EPIC → Ego4D Ego4D → EPIC

ADE ↓ FDE ↓ ADE ↓ FDE ↓

CVM [43] 108.11 143.23 141.70 155.40
KF [23] 71.23 72.87 70.58 75.60
Seq2Seq [47] 62.43 67.85 67.97 72.26
OCT [31] 57.74 59.10 64.97 65.84
I3D + Regression [16] 59.72 61.72 51.70 58.37
Ours 53.67 56.36 51.03 56.78

that the proposed method consistently outperforms the state-of-the-art meth-
ods. Our proposed method surpasses OCT by 9.4% (from 53.85 to 48.78) and I3D
+ Regression by 1.7% (from 49.64 to 48.78) on the EPIC-Kitchens 55 dataset.
On the Ego4D dataset, our method exhibits similar performance on EPIC-
Kitchens 55 and outperforms the prior works. Furthermore, the poor perfor-
mance of the constant velocity model [43], which outperforms the learning-based
approaches [18, 42] for pedestrian trajectory prediction from exocentric videos,
confirms that the 2D hand forecasting task from egocentric videos presents
unique challenges due to ego-motion.
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Fig. 3: The accuracy drop compari-
son. The figure summarizes the accuracy
drop percentage in the cross-dataset sce-
nario from the accuracy in the intra-dataset
scenario for each method. A lower value in-
dicates that the performance does not drop
by changing the scenario from intra-dataset
to cross-dataset. We summarize the perfor-
mance drop of the learning-based model as
there is no performance degradation in non-
learnable methods, such as CVM and KF.

Cross-dataset evaluation. We com-
pare the generalization performance
for future hand forecasting with the
state-of-the-art methods in the cross-
dataset scenario, where the domain
of the test data is different from the
training dataset. Tab. 2 summarizes
the generalization performance of the
comparison methods and the pro-
posed method. Our proposed method
surpasses OCT by 7.0% on the Ego4D
dataset, where the models are trained
on the EPIC-Kitchens 55 dataset.

Moreover, the learning-based ap-
proaches (OCT, I3D+Regression, and
Ours) demonstrate lower accuracy in
the cross-dataset scenario as com-
pared to intra-dataset evaluations (see
Fig. 3). This performance decrease
stems from dataset bias, as the two
datasets originate from different distributions. The performance of I3D + Re-
gression drops significantly (21.1%) when the model is trained on EPIC-Kitchens
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Table 3: Action category-level evaluation. We compare the hand forecasting per-
formance in the cross-dataset scenarios at the action category level with the conven-
tional learning-based approaches. The results of five action categories, such as cooking,
mechanic, arts/crafts, building, and gardening/farming, are summarized in the table.

Method
Cooking Mechanic Arts and crafts Building Gardening/farming

ADE ↓ FDE ↓ ADE ↓ FDE ↓ ADE ↓ FDE ↓ ADE ↓ FDE ↓ ADE ↓ FDE ↓

Seq2Seq [47] 58.45 60.73 59.78 62.83 64.60 66.85 68.28 70.11 64.42 66.52
OCT [31] 52.45 54.57 53.63 55.24 62.52 64.19 63.06 63.83 57.49 58.25
I3D + Regression [16] 48.26 52.26 58.03 59.73 63.03 64.89 67.55 68.83 61.80 62.98
Ours 47.32 51.33 47.53 51.02 58.89 61.28 59.83 62.30 53.16 55.68

55 and tested on Ego4D. On the other hand, although the accuracy is dropped
in our method on Ego4D (9.6% dropping), the decrease is relatively small com-
pared to other learning-based methods, thereby verifying the generalizability of
the proposed method.
Action category-level evaluation. We conduct action category-level evalu-
ations in the cross-dataset scenario, where the models are trained on EPIC-
Kitchens 55 and tested on each action category on Ego4D to assess the gener-
alizability among unseen actions. We focus on five major action categories on
the Ego4D validation set: cooking, mechanic, arts/crafts, building, and garden-
ing/farming. Tab. 3 demonstrates that our proposed method outperforms the
prior learning-based methods across all categories. This indicates that our pro-
posed method is highly generalizable to unseen action categories. In contrast,
although the I3D + Regression method performs well in the cooking category,
which is included in the training dataset, a significant performance gap can be
seen in other categories compared to the cooking category. This occurs because
I3D + Regression tends to overfit to the context and background of the training
data, particularly in the cooking category.

4.6 Ablation Analysis

Input modality. The ablation study focuses on the input modalities to ver-
ify the contribution of each input component to the overall performance in
intra/cross-dataset settings. We experiment by removing each input modality:
bounding boxes of objects, RGB frame, optical flow, and ego-motion informa-
tion. As shown in Tab. 4, the absence of visual or flow information degrades the
performance by 2.4% (from 48.89 to 50.08) and 4.3% (from 48.89 to 51.00) on
intra-dataset evaluation on average, respectively.

Moreover, although the absence of object or ego-motion information outper-
forms the proposed method on intra-dataset evaluation, these methods degrade
the prediction performance on cross-dataset scenarios. This performance deteri-
oration on cross-dataset scenarios indicates that leveraging all input modalities
(the proposed method), including ego-motion information, is beneficial for un-
seen scenes.
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Table 4: Input modality ablation study.
Ablation study on the input modalities on
Ego4D and EPIC-Kitchens 55. We summarize
the results of two scenarios, intra or cross-
dataset. The last column is the result of the
proposed method, which uses all the modal in-
formation.

Object RGB Flow Ego
Intra Cross

ADE ↓ FDE ↓ ADE ↓ FDE ↓

✓ ✓ ✓ 48.76 53.79 52.78 57.02
✓ ✓ ✓ 50.08 54.83 53.30 57.54
✓ ✓ ✓ 51.00 54.78 54,74 57.93
✓ ✓ ✓ 48.35 53.24 52.89 57.02

✓ ✓ ✓ ✓ 48.89 53.43 52.35 56.57

Table 5: Loss component abla-
tion study. Ablation study on ego-
motion estimation loss on the two
datasets in intra and cross-dataset
scenarios to verify the effectiveness
of propagating ego-motion estima-
tion loss.

Method
Intra Cross

ADE ↓ FDE ↓ ADE ↓ FDE ↓

w/o Lego 49.66 54.26 52.84 57.08
w/ Lego (Ours) 48.89 53.43 52.35 56.57

Loss. We also perform an ablation study on the loss function. We evaluate the
advantage of the ego-motion estimation loss term Lego in Eq. (9). Tab. 5 shows
that training the proposed method without the ego-motion estimation loss Lego
deteriorates hand forecasting performance by 1.6% and 0.9% in terms of ADE
in the intra/cross-dataset scenario, respectively. This degradation verifies the
effectiveness of the proposed method, which forecasts the camera wearer’s future
ego-motion as an auxiliary task.

4.7 Qualitative Results

The qualitative results on the Ego4D and EPIC-Kitchens 55 datasets are visual-
ized in Fig. 4. We present two sequences from EPIC-Kitchens 55 in the top two
rows of the figure and two sequences from Ego4D in the bottom two rows. In the
second sequence from the top of EPIC-Kitchens, where the camera wearer turns
left, the proposed method predicts the hand positions more accurately than the
other methods. This capability of prediction, even in the presence of ego-motion,
verifies the effectiveness of our ego-motion-aware model.

5 Conclusion

Conclusion. We present EMAG, the first model to explore the potential benefit
of incorporating ego-motion into the hand forecasting task. We propose lever-
aging the homography matrix to represent the camera wearer’s ego-motion and
to verify its effectiveness. Furthermore, our proposed method utilizes multiple
modalities to mitigate the susceptibility to overfitting to backgrounds or scene
textures. Experiments on two large-scale egocentric datasets, Ego4D and EPIC-
Kitchens 55, demonstrate that our simple but effective approach outperforms
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Fig. 4: Qualitative results. We present two sequences of predictions each from Ego4D
and EPIC-Kitchens 55. Dots colored in green, red, blue, and yellow represent the hand
positions of the ground truth, the proposed method, I3D + Regression, and OCT,
respectively.

the state-of-the-art hand forecasting methods in terms of accuracy and general-
izability against unseen scenes and actions.
Limitations and future work. Our proposed method leverages the trajectory
information of hands and objects detected based on the off-the-shelf hand object
detector [44] from egocentric video. Thus, the bias and errors from the off-the-
shelf detector may still affect the input trajectory information. In addition, the
proposed method requires multiple pre-processing modules, such as hand object
detection, optical flow estimation, and homography matrix estimation. However,
efficient and real-time inference capabilities on edge devices are essential for
forecasting in real-world applications. We will leave this for our future efforts.
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