
AttentionHand:
Text-driven Controllable Hand Image Generation

for 3D Hand Reconstruction in the Wild

Junho Park1,2∗ , Kyeongbo Kong3∗ , and Suk-Ju Kang1B

1 Department of Electronic Engineering, Sogang University, South Korea
2 AI Lab, CTO Division, LG Electronics, South Korea

3 Department of Electrical & Electronics Engineering, Pusan National University,
South Korea

junho18.park@gmail.com kbkong@pusan.ac.kr sjkang@sogang.ac.kr
https://github.com/redorangeyellowy/AttentionHand

Abstract. Recently, there has been a significant amount of research
conducted on 3D hand reconstruction to use various forms of human-
computer interaction. However, 3D hand reconstruction in the wild is
challenging due to extreme lack of in-the-wild 3D hand datasets. Espe-
cially, when hands are in complex pose such as interacting hands, the
problems like appearance similarity, self-handed occclusion and depth
ambiguity make it more difficult. To overcome these issues, we propose
AttentionHand, a novel method for text-driven controllable hand image
generation. Since AttentionHand can generate various and numerous in-
the-wild hand images well-aligned with 3D hand label, we can acquire
a new 3D hand dataset, and can relieve the domain gap between in-
door and outdoor scenes. Our method needs easy-to-use four modalities
(i.e, an RGB image, a hand mesh image from 3D label, a bounding
box, and a text prompt). These modalities are embedded into the latent
space by the encoding phase. Then, through the text attention stage,
hand-related tokens from the given text prompt are attended to high-
light hand-related regions of the latent embedding. After the highlighted
embedding is fed to the visual attention stage, hand-related regions in
the embedding are attended by conditioning global and local hand mesh
images with the diffusion-based pipeline. In the decoding phase, the final
feature is decoded to new hand images, which are well-aligned with the
given hand mesh image and text prompt. As a result, AttentionHand
achieved state-of-the-art among text-to-hand image generation models,
and the performance of 3D hand mesh reconstruction was improved by
additionally training with hand images generated by AttentionHand.

Keywords: 3D Hand Mesh Reconstruction · Text-to-Image Generation

* Equal contribution.
B Corresponding author.

https://orcid.org/0009-0001-3474-0010
https://orcid.org/0000-0002-1135-7502
https://orcid.org/0000-0002-4809-956X
https://github.com/redorangeyellowy/AttentionHand


2 J. Park et al.

Fig. 1: Various acquisition types of 3D hand datasets. (a) In-the-wild dataset (i.e.,
MSCOCO [6]) is naively acquired with inaccurate pseudo annotation, (b) relighted
dataset (i.e., Re:InterHand [5]) consists of unnatural hands with inharmonious back-
ground, and (c) our in-the-wild dataset from AttentionHand, which is annotated with
accurate 3D labels, contains natural hands with harmonious background, easy to gen-
erate, and can be made infinitely.

1 Introduction

The goal of 3D hand mesh reconstruction is to recover the 3D hand mesh from a
single RGB image. It becomes difficult when hands are in the wild, due to insuf-
ficiency of in-the-wild 3D hand datasets. Compared to in-the-lab datasets [1–3],
acquisition in-the-wild datasets is challenging due to unpredictable conditions
such as weather, lighting, cost of sensors, and safety issues on crowded roads
and public places. Even if an in-the-wild dataset is collected, data diversity
would be poor due to the aforementioned severe constraints. Although arbitrary
labels can be obtained through pseudo annotation, the precision and accuracy
is still poor compared to in-the-lab datasets as shown in Fig. 1(a). To tackle
this problem, several synthetic datasets [4, 5] have introduced. However, since
the hand and background images are synthesized out of harmony, they consist
of unnatural and unrealistic hand images as shown in Fig. 1(b). Hence, it is
difficult to overcome the domain gap between indoor and outdoor scenes with
synthetic datasets.

Moreover, when hands are in a complex pose like interacting hands, it be-
comes even more challenging to reconstruct 3D hand meshes due to the ap-
pearance similarity, self-handed occclusion and depth ambiguity. Starting with
InterHand2.6M [7], several works [8–15] have emerged to solve the complex hand
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Fig. 2: Visualization of attention maps with corresponding tokens from given text
prompts. Red and green boxes represent attention maps without and with Attention-
Hand, respectively.

pose. However, they have been employed and evaluated primarily on in-the-lab
scenes except for InterWild [16]; it tried to relieve the domain gap by leveraging
the geometric features of the hand, which is not affected by the domain. Never-
theless, since InterWild was trained with MSCOCO [6], which is extremely lack
of in-the-wild hand images with inaccurate 3D labels, there is earnestly need of
more diverse, numerous, and accurately annotated in-the-wild datasets.

To address aforementioned issues, we propose AttentionHand, a new method
for the text-driven controllable hand image generation. AttentionHand is de-
signed based on Stable Diffusion (SD) [17] to create accurate, natural, realistic
and harmonious in-the-wild hand images easily and infinitely as shown in Fig.
1(c). AttentionHand has a huge advantage: we can simply generate images with
only four modalities – an RGB image, the corresponding hand mesh image,
bounding box, and text prompt. Therefore, we can generate (1) various in-the-
wild hand images with flexible text prompts, and (2) well-aligned hand images
with 3D hand label. By generating new samples with AttentionHand, we can
alleviate aforementioned issues of the 3D hand mesh reconstruction in the wild.

To train AttentionHand, we need to additionally prepare a local RGB im-
age and local mesh image for attention of hand-focused region of the image. The
preparation of local information is essential because hands commonly occupy rel-
atively small region in the image. Hence, we obtain local RGB and mesh images
by cropping and resizing original RGB and mesh images (i.e., we define them
as global information) with the bounding box of hand region. After encoding
prepared information in the encoding phase, encoded latent embeddings are fed
to the conditioning phase, which is composed of the text attention stage (TAS)
and visual attention stage (VAS).

TAS attends on hand-related tokens from the given text prompt by leverag-
ing attention maps as shown in Fig. 2. Specifically, TAS extracts hand-related
attention maps (i.e., holding and hand), and these attention maps are updated to
highlight hand-related regions by the refinement based on the softmax operation
and Gaussian filter. With TAS, we can obtain more hand-focused images than
before. On the other hand, VAS attends on hand-related regions by conditioning
global and local hand mesh images with the SD-based pipeline. With global and
local information, AttentionHand can be jointly optimized to reflect the global
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context (i.e., in-the-wild background) and local context (i.e., hand-focused fore-
ground.) In the end of the conditioning phase, we finally get the diffusion feature,
which is decoded to new hand images in the decoding phase. Hence, Attention-
Hand can generate well-aligned hand images with the given mesh image and text
prompt for the 3D hand mesh reconstruction in the wild.

To prove the excellence of AttentionHand, we conducted extensive exper-
iments for the text-to-hand image generation and 3D hand mesh reconstruc-
tion. As a result, AttentionHand achieved state-of-the-art in the text-to-hand
image generation, and the performance of 3D hand mesh reconstruction was
considerably improved by additionally training with new hand samples gener-
ated by AttentionHand. Especially, the performance was enhanced significantly
on in-the-wild datasets, which implies AttentionHand can generate various and
well-annotated in-the-wild hand images. The summary of our contributions is as
follows:

– We propose a novel method, AttentionHand, which generates well-aligned in-
the-wild hand images in a simple manner without laborious data acquisition.

– AttentionHand is designed based on a generative model that attends on
hand-related tokens from the text prompt and hand-related regions from
the hand mesh image, for generating hand-focused images.

– AttentionHand achieved state-of-the-art in the text-to-hand image genera-
tion, and we verified that utilizing the dataset generated from AttentionHand
improves the performance on 3D hand mesh reconstruction in the wild.

2 Related Work

2.1 Text-to-Image Generation

Text-to-image generation aims to synthesize high-resolution image from natu-
ral language descriptions. With the advent of diffusion models, various stud-
ies on text-to-image generation have been conducted in recent years [17–21].
Specifically, ControlNet [18] and T2I-Adapter [19] proposed novel approaches
to incorporate arbitrary condition into the generation process. Recently, Uni-
ControlNet [20] presented a novel approach that allows for the simultaneous
utilization of various conditions in a flexible and composable manner. Neverthe-
less, aforementioned models exhibited common limitations in generating hand
images, due to the relatively small size of hands within the overall image reso-
lution.

2.2 Generative Models for Hand

GANs for Hand. There are several works [22–25] to tackle the hand image
generation problem with the generative adversarial network (GAN) [26]. Specif-
ically, a novel network for image-to-image translation [22] was proposed to make
generated images follow the same statistical distribution as real-world hand im-
ages. GestureGAN [23] was designed to translate hand gesture-to-gesture with
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the explicit hand skeleton information through the color loss and the cycle-
consistency loss. Moreover, the first model-aware gesture-to-gesture translation
framework [24] was introduced with hand prior as the intermediate representa-
tion. Recently, a new method [25], which employs the expressive model-aware
hand-object representation and leverages its inherent topology to build the uni-
fied surface space, was proposed. However, these works have a common limi-
tation; they are confined to target gestures in generating new hand images. In
other words, they are inappropriate to generate in-the-wild images focused on
various hands.

Diffusion Models for Hand. Recently, some works [27–29] have been ad-
dressed hand-related problems with diffusion models. DiffHand [27] introduced
the first diffusion-based framework that approaches hand mesh reconstruction
as a denoising diffusion process. HandDiffuse [28] proposed a strong baseline for
the controllable motion generation of interacting hands using various controllers
by designing a diffusion-based model. HandRefiner [29] presented an inpainting
pipeline to rectify malformed human hands in generated images with diffusion-
based models. However, since these models are not text-driven methods, they
cannot generate various in-the-wild hand images conditioned on language in-
structions.

3 Method

We introduce AttentionHand, a novel framework for creating various and plau-
sible hand images. AttentionHand is a SD-based framework that can generate
new RGB images infinitely conditioned on hand mesh images and text prompts.
The overall pipeline is shown in Fig. 3.

3.1 Data Preparation Phase

As shown in the first box of Fig. 3, it just requires four inputs to train At-
tentionHand: (1) a global RGB hand image IGRGB ∈ R3×512×512, (2) a global
hand mesh image IGmesh ∈ R3×512×512, (3) a bounding box of the hand region
B ∈ R1×4, and (4) a hand-related text prompt U . However, since hands typi-
cally occupy small areas on in-the-wild scenes, we also obtain a local RGB hand
image ILRGB ∈ R3×512×512 and a local hand mesh image ILmesh ∈ R3×512×512 by
cropping and resizing IGRGB and IGmesh with B. This combination of local and
global information enhances hand image conditioning. Details will be explained
in the supplementary materials.

3.2 Encoding Phase

For the diffusion process in latent space, encoding phase for IGRGB , ILRGB and
U is implemented by the encoder E . It makes global and local latent image em-
beddings XG

0 , XL
0 ∈ R4×64×64 for IGRGB and ILRGB , and a latent text embedding
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Fig. 3: Overall pipeline of AttentionHand. In the data preparation phase, we prepare
global and local RGB images, global and local hand mesh images, bounding box, and
text prompt. In the encoding phase, we get global and local latent image embeddings
through VQ-GAN [30], and text embedding through CLIP [31]. In the conditioning
phase, we refine image embeddings through the text attention stage, and obtain the
diffusion feature through the visual attention stage. In the decoding phase, we generate
a new hand image ÎRGB from Yd through VQ-GAN.

K ∈ R77×768 for U . Specifically, XG
0 and XL

0 are obtained by VQ-GAN [30], and
K is obtained by CLIP [31] as shown in the second box of Fig. 3. These latent
embeddings are fed as inputs to the conditioning phase, which will be introduced
by the next subsection. The encoding phase is expressed as follows:

XG
0 , XL

0 ,K = E(IGRGB , I
L
RGB , U). (1)

3.3 Conditioning Phase

For generating new hand images conditioned by given text prompt and mesh
images, we design the text attention stage (TAS) and the visual attention stage
(VAS) in the conditioning phase, as shown in the third box of Fig. 3. TAS is a
stage of paying attention to tokens for the hand and its corresponding gesture
in a given text. VAS is a stage of training the SD-based model specialized for
hand image generation by conditioning global and local mesh images.

Text Attention Stage (TAS). TAS is a stage of attending tokens which
represent hand or gestures in a given text prompt as shown in Fig. 4(a). First,
by adding Gaussian noise to XG

0 and XL
0 with t diffusion steps, the global noisy

embedding XG
t and local noisy embedding XL

t are obtained. For simplicity, we
define as X0 = (XG

0 , XL
0 ) and Xt = (XG

t , XL
t ). Then, Xt and K are fed to

TAS as inputs. For the text attention of TAS, we utilize the cross attention [32].
Specifically, an attention map A ∈ RH×W×N is obtained by calculating the key
(i.e., K) and query (i.e., Q, which is the linear projection of intermediate feature
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Fig. 4: (a) Overall process of the text attention stage (TAS). By leveraging the hand-
related tagging and refinement, we can highlight hand-related attention maps, which
leads to update noisy embeddings with LTAS . (b) Overall process of the visual at-
tention stage (VAS). By utilizing the global and local information, we can obtain the
harmonious diffusion feature, which leads to generate high-fidelity hand images.

map from Xt of U-Net [33] in SD). H and W denote the height and width of A,
and N denotes the number of all tokens of K.

Next, to extract hand-related attention maps Ak∈K ∈ RH×W×Nk in A, we
design the hand-related tagging Htag, which is based on part-of-speech tagging
[34], where Nk denotes the number of hand-related tokens in K. Specifically,
Htag determines if the input token indicates the hand-related word (i.e., holding,
taking, or hand). With Htag, we can attend hand-related tokens k to generate
more hand-focused images. More details are in the supplementary materials.

Then, we employ the softmax operation and Gaussian smoothing to maximize
the effect of Ak. Since the Gaussian filter effectively removes noise from images
and preserves detailed information by using the average value of surrounding pix-
els, we fully exploit these advantages. Hence, Ak is updated to Âk ∈ RH×W×Nk

by refining hand-related attention maps as follows:

Âk = Gaussian(Softmax(Ak)). (2)

For simplicity, we define Â ∈ RH×W×N as the concatenation of Âk∈K and
Al/∈K ∈ RH×W×Nl , where Nl denotes the number of not hand-related tokens
in K, and N = Nk +Nl.

Moreover, optimization for evenly reflecting the image features of all atten-
tion maps is necessary. In other words, it is required to design an objective to
prevent poor generation of the image feature for a specific token. Specifically,
for arbitrary token n ∈ K, the highest value sn among all patches in the n-th
refined attention map Ân is extracted, and it is subtracted from 1. This opera-
tion is implemented for all tokens in K, and a novel loss, which named LTAS , is
computed the largest value among them as follows:

LTAS = maxn∈K(1− sn). (3)
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Based on LTAS , Xt is updated to X̂t = (X̂G
t , X̂L

t ) as follows:

X̂t = Xt − αt∇XtLTAS , (4)

where αt indicates the learning rate, and X̂G
t and X̂L

t indicate updated global
and local noisy embedding, respectively.

Visual Attention Stage (VAS). VAS is a stage of training SD-based model by
conditioning the aforementioned global and local mesh image. VAS is composed
of two modules: one is the guidance module ϕg, and the other is the diffusion
module ϕd as shown in Fig. 4(b). First, the diffusion module ϕd is designed
based on an U-Net network, consisting of 25 blocks: 8 blocks are downsampling
and upsampling convolution layers, and the remaining 17 blocks consist of four
ResNet [35] layers and two Vision Transformers [36]. We define the parameter set
of ϕd as θd, which is fixed frozen to maintain the image generation performance
of SD.

On the other hand, the guidance module ϕg is also based on an U-Net network
with 25 blocks of ϕd. We define the parameter set of ϕg as θg, which is a copied
version of θd. Different from θd, θg is set to be learnable for generating images
conditioned to IGmesh and ILmesh. Specifically, ϕg has zero convolution Z [18]
at the front of the network, and last 12 blocks of the network consist of Z.
Since Z is defined as a 1 × 1 convolution layer whose weights and bias are
initialized to zero, the gradients of the weight and bias progressively grow from
zeros to optimized parameters in a learnable manner. Hence, Z helps generated
images to be conditioned on IGmesh and ILmesh, while maintaining the quality of
image generation. More specifically, ϕd and ϕg share weights at the beginning of
training, because parameter sets of both modules, i.e, θd and θg, are initialized
with the pre-trained SD. However, while continuing with training process, θg
is updated to learn IGmesh and ILmesh, whereas θd is fixed frozen to preserve the
performance of image generation. At the end of training, θd and θg are completely
different from the beginning. Hence, ϕg is formulated as follows:

Yg = ϕg(X̂t, Imesh,K, t; θg), (5)

where Imesh = (IGmesh, I
L
mesh) denotes the concatenation of the global and local

mesh image, t denotes the diffusion step obtained by positional encoding, Yg =
(Y G

g , Y L
g ) ∈ R2×4×64×64 denotes the concatenation of the global guidance feature

Y G
g and local guidance feature Y L

g . Next, ϕd is formulated as follows:

Yd = ϕd(X̂t,K, t; θd) + Yg, (6)

where Yd = (Y G
d , Y L

d ) ∈ R2×4×64×64 indicates the concatenation of the global
diffusion feature Y G

d and local diffusion feature Y L
d .

Optimization. Since the diffusion model typically involves both forward and
reverse processes, our AttentionHand also employs two processes. For the for-
ward process, the noisy embedding Xt = (XG

t , XL
t ) is obtained by progressively
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perturbing Gaussian noise ϵ = (ϵG, ϵL) to the initial embedding X0 = (XG
0 , XL

0 )
by t diffusion steps. ϵG and ϵL denote the global and local noise added to XG

0

and XL
0 , respectively. Then, since Xt is updated to X̂t by TAS, ϵ is also updated

to ϵ̂ = (ϵ̂G, ϵ̂L). In other words, ϵ̂ is considered the residual noise between X0

and X̂t. Thus, ϵ̂G and ϵ̂L denote the global and local residual noise. For the
reverse process, AttentionHand learns to gradually remove residual noises with
global and local denoising processes. Therefore, given text embedding K, diffu-
sion steps t, and mesh images IGmesh and ILmesh, the diffusion training network
ϵθ is optimized to predict ϵ̂G and ϵ̂L jointly through the following objectives:

LG = E
XG

0 ,IG
mesh,K,t,ϵ̂G∼N (0,1)

[∥ϵ̂G − ϵθ(X̂
G
t , IGmesh,K, t)∥22], (7)

LL = E
XL

0 ,IL
mesh,K,t,ϵ̂L∼N (0,1)

[∥ϵ̂L − ϵθ(X̂
L
t , I

L
mesh,K, t)∥22], (8)

where LG and LL indicate the cost function of global and local features, respec-
tively. Thus, the final objective is defined as follows:

L = λGLG + λLLL, (9)

where λG and λL are weighted coefficients of LG and LL.

3.4 Decoding Phase

In the decoding phase, we can generate a new RGB hand image ÎRGB ∈ R3×512×512

by passing Yd through the decoder D, as shown in the fourth box of Fig. 3. While
E encodes X0 by downsampling IRGB in the latent space, D decodes ÎRGB by
upsampling Yd in the pixel space, conditioned to given text prompt and mesh
images. The structure of D is similar to the decoder of VQ-GAN. The decoding
phase is expressed as follows:

ÎRGB = D(Yd). (10)

4 Experiments

4.1 Datasets

For the text-to-image generation, we adopted MSCOCO [6]. For the 3D hand
mesh reconstruction, we adopted Hands-In-Action (HIC) [37], Re:InterHand
(ReIH) [5], InterHand2.6M (IH2.6M) [7], and MSCOCO. Due to the page limit,
details will be explained in the supplementary materials.
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Table 1: Quantitative comparisons with state-of-the-art text-to-image generation
models.

Methods FID↓ KID↓ FID-H↓ KID-H↓ Hand Conf.↑ MSE-2D↓ MSE-3D↓ User Pref.(%)↑
Stable Diffusion [17] 40.52 0.00684 50.78 0.02554 0.651 2.932 4.591 5.864
Uni-ControlNet [20] 30.34 0.00744 37.77 0.02004 0.855 2.105 3.039 8.796
T2I-Adapter [19] 22.00 0.00761 32.08 0.01568 0.914 1.546 2.451 19.676
ControlNet [18] 21.67 0.00658 40.32 0.02098 0.810 1.252 2.182 7.948
AttentionHand (w/o TAS) 21.27 0.00331 28.56 0.01390 0.955 1.211 2.042 20.734
AttentionHand (w/ TAS) 20.71 0.00301 27.09 0.01287 0.965 1.026 1.986 36.905

Fig. 5: Qualitative comparisons with state-of-the-art text-to-image generation models.
Red and green boxes in each sample indicate the wrong and corrent hand bounding
box, respectively.

4.2 Evaluation Protocol

For the text-to-image generation, we adopted FID [38], FID-Hand (FID-H), KID
[39], KID-Hand (KID-H), the hand confidence score (Hand Conf.) [40], the mean
square error of 2D and 3D keypoints (MSE-2D, 3D), and the user preference
(User Pref.). For the 3D hand mesh reconstruction, we adopted the mean per-
vertex position error (MPVPE), the right hand-relative vertex error (RRVE),
and the mean relative-root position error (MRRPE). Due to the page limit,
details will be explained in the supplementary materials.

4.3 Comparisons with State-of-the-arts

Text-to-Image Generation. As shown in Table 1, our AttentionHand exhib-
ited the highest performance in all metrics among state-of-the-arts [17–20]. This
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Table 2: Quantitative comparisons with state-of-the-art 3D hand mesh reconstruction
methods with and without AttentionHand. The red subscripts indicate the difference
in performance with and without AttentionHand.

Datasets In-the-wild In-the-lab
HIC [37] ReIH [5] IH2.6M [7]

Methods MPVPE↓ RRVE↓ MRRPE↓ MPVPE↓ RRVE↓ MRRPE↓ MPVPE↓ RRVE↓ MRRPE↓
IHMR [8] 38.57 45.51 119.64 30.90 45.55 98.45 16.94 21.98 33.39
IHMR+AttentionHand 36.73−1.84 44.10−1.41 94.63−25.01 29.11−1.79 43.12−2.43 87.07−11.38 15.09−1.85 20.55−1.43 32.21−1.18

InterShape [9] 27.66 34.69 110.25 27.87 38.56 80.04 12.97 17.35 31.56
InterShape+AttentionHand 25.04−2.62 33.33−1.36 80.17−30.08 26.44−1.43 36.54−2.02 61.41−18.63 11.90−1.07 16.22−1.13 30.04−1.52

IntagHand [10] 23.07 28.74 52.46 25.90 30.05 42.22 12.34 17.32 29.31
IntagHand+AttentionHand 21.87−1.20 27.09−1.65 47.11−5.35 23.39−2.51 28.77−1.28 33.98−8.24 11.42−0.92 15.81−1.51 29.18−0.13

DIR [13] 21.89 26.11 43.11 21.82 29.66 37.01 10.26 17.11 28.98
DIR+AttentionHand 20.66−1.23 25.87−0.24 40.54−2.57 19.91−1.91 26.67−2.99 35.05−1.96 10.09−0.17 16.99−0.12 28.02−0.96

InterWild [16] 15.30 21.35 31.26 13.99 20.07 22.38 11.52 19.77 26.87
InterWild+AttentionHand 14.74−0.56 21.10−0.25 29.26−2.00 13.95−0.04 19.94−0.13 22.05−0.33 10.62−0.90 19.09−0.68 25.74−1.13

Fig. 6: Qualitative comparisons on MSCOCO [6]. Red and green boxes indicate wrong
and correct region of the reconstructed hand, respectively.

is particularly evident in the comparison of FID(-H) and KID(-H), which sig-
nify the quality of the generated images being on par with real RGB images.
Furthermore, the lowest MSE-2D and MSE-3D indicates the remarkable align-
ment between the generated images and the corresponding hand mesh images.
With respect to the user preference, AttentionHand scored the highest com-
pared to other methods. It implies that most users acknowledged the outstand-
ing quality of hand images generated by AttentionHand. In addition, as shown
in Fig. 5, our AttentionHand generated the high-quality hand image which is
well-corresponding with the given mesh image and fully reflected the given text
prompt. Specifically, even when two-hands mesh image is given, which is more
challenging than in the case of single-hand mesh image, AttentionHand gener-
ated the hand image robustly. It implies our AttentionHand is proper to generate
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well-aligned hand images with given mesh images and text prompt. Additional
qualitative results are in the supplementary materials.

3D Hand Mesh Reconstruction. To verify our AttentionHand extensively,
we trained state-of-the-art hand pose networks [8–10, 13, 16] by additionally
adding new data generated by AttentionHand. As shown in Table 2, the perfor-
mance of all methods increased for all metrics. Specifically, with respect to the
MPVPE, AttentionHand showed the dramatic performance improvement with
InterWild [16] about 3.66% and 7.81% on HIC and ReIH, respectively. With
respect to the RRVE, it increased by about 1.17% and 0.65% on HIC and ReIH,
respectively. With respect to the MRRPE, it increased by about 6.40% and
1.47% on HIC and ReIH, respectively. These imply generated hand images help
increasing the accuracy of the 3D hand mesh reconstruction. In addition, the
qualitative performance for in-the-wild scenes is also verified as shown in Fig.
6. Although MSCOCO mainly contains in-the-wild situations, 3D hand mesh is
reconstructed robustly. It implies that even for difficult situations, the perfor-
mance of reconstruction can be improved by utilizing AttentionHand. Additional
qualitative results are in the supplementary materials.

4.4 Ablation Studies

Text Attention Stage (TAS). We deeply dived into TAS to verify its supe-
riority. Firstly, as in the last two rows in Table 1, TAS showed its effectiveness
in all metrics. In addition, as shown in Fig. 7, attention maps are well described
their corresponding tokens in the case of with TAS. It implies that with TAS,
AttentionHand can reflect hand-related tokens enough. Additional qualitative
results are in the supplementary materials.

Secondly, we conducted more experiments about Gaussian filters as follows:
(1) no Gaussian filter, (2) random Gaussian filter, and (3) fixed Gaussian filter.
As shown in the second, third, and fourth columns of Fig. 8, we found interesting
results: in the case of (1), the hand was disappeared or its shape became strange.
In the case of (2), generated images are not well-aligned with given hand mesh
images. However, in the case of (3), generated images are well-aligned with given
hand mesh images and look natural. Hence, we determined fixed Gaussian filter
makes the generated image plausibly regardless of diffusion timestep t.

Thirdly, we compared our loss, LTAS , with the load balancing loss (LLB)
[41, 42]. Since LLB is an auxiliary loss for balancing loads among experts, it
plays a similar role with LTAS , which evenly reflects the image features of all
the attention maps. Therefore, we replaced LTAS to LLB and considered its
feasibility as shown in the fifth column of Fig. 8. Unfortunately, in the case of
LLB , generated images are not fit at all with given hand mesh images. We guess
while LTAS updates the image embedding based on the spatial information of
the attention map, LLB flattens the 2D attention map as 1D representation,
leading to distort spatial knowledge.

Last but not least, we explored the range of updated noise (ϵ̂). According
to [43], we set αt of Eq. 4 as gradually decreasing according to timestep t (i.e.,
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Fig. 7: Ablation studies on the text attention stage (TAS). Attention maps with red
and green box are results without and with TAS, respectively. Red and green bounding
boxes indicate wrong and correct hand poses, respectively.

Fig. 8: Ablation studies on Gaussian filter, losses (i.e. LTAS and LLB), and the reg-
ularization of ϵ̂ for the text attention stage (TAS). Red and green bounding boxes
indicate wrong and correct hand poses, respectively.

from 20 to 10) for regularization of ϵ̂. However, if αt is randomly set, ϵ̂ tends to
be out of distribution (i.e., Gaussian distribution) as shown in the sixth column
of Fig. 8: in the case of w/o regularization, generated images are not aligned
with given mesh images, or missed some hands. Therefore, it is necessary to
regularize ϵ̂ for faithful hand image generation.

Model Design Justification. To justify our model’s superiority, we compared
the characteristics of prior works including our model. As shown in Table 3,
our model’s distinctive and potential features compared to prior works are (1)
harmonious preservation of locality (i.e., hand) with globality (i.e., in-the-wild
scene), and (2) selective attention on hand-related tokens by cross attention.
Specifically, to harmonize globality and locality, we developed global and local
designs for the visual attention stage (VAS). Moreover, since the global and local
branches are designed structurally same, we set them to share their weights for
reducing the number of training parameters (about 20.2% ↓) and improving the
generalizability (see two shaded rows in Table 4). We experimentally verified the
effectiveness of our design as shown in Table 4.
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Table 3: Network comparisons with prior works.

Methods Text Prompt Visual Prompt Locality Hand-related Token Attention
Stable Diffusion ✓

Uni-ControlNet ✓ ✓

T2I-Adapter ✓ ✓

ControlNet ✓ ✓

AttentionHand (Ours) ✓ ✓ ✓ ✓

Table 4: Ablation studies on the visual attention stage (VAS).

Globality Locality Weights FID↓ KID↓ FID-H↓ KID-H↓ Hand Conf.↑ MSE-2D↓ MSE-3D↓
Shared 40.52 0.00684 50.78 0.02554 0.651 2.932 4.591

✓ Shared 21.67 0.00658 40.32 0.02098 0.810 1.252 2.182
✓ Shared 52.98 0.00713 32.11 0.01604 0.911 1.539 2.397

✓ ✓ Shared 20.71 0.00301 27.09 0.01287 0.965 1.026 1.986
✓ ✓ Separated 21.90 0.00293 26.89 0.01340 0.960 1.108 2.017

Fig. 9: (a) Multiple generated hand images from same modalities. Green boxes indicate
correct hand poses. (b) t-SNE distribution of AttentionHand and MSCOCO [6].

Robustness of Generated Dataset. To verify robustness of our generated
dataset, we generated multiple hand images from same modalities as shown
in Fig. 9(a). As a result, all generated images are perfectly well-aligned with
given hand mesh images. Moreover, we found the t-SNE distribution [44] of
AttentionHand is broader than MSCOCO as shown in Fig. 9(b). As a result,
we believe that AttentionHand can contribute to the downstream task with our
extensive in-the-wild hand images, leading to alleviate the domain gap between
indoor and outdoor scenes.

5 Conclusion

In this paper, we introduced a novel text-to-hand image generation model, At-
tentionHand, which pays attention to the hand-related tokens from the text
prompt and global and local mesh images. AttentionHand achieved state-of-the-
art performance in text-to-hand image generation, and we demonstrated that
training with the dataset generated by our AttentionHand improved the perfor-
mance of 3D hand mesh reconstruction. However, the diversity may decrease as
the generative model is trained to optimize hand mesh images. We expect for the
emergence of outstanding diffusion model to improve the diversity and quality
of the hand image.
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