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Fig. 1: By optimizing through a quasi-physical simulator curriculum, we success-
fully transfer human demonstrations to dexterous robot hand simulations. We enable
accurate tracking of complex manipulations with changing contacts (Fig. (a)), non-
trivial object motions (Fig. (b)) and intricate tool-using (Fig. (c,d)). Besides, our
physics curriculum can substantially improve a failed baseline (Fig. (e,f)).

Abstract. We explore the dexterous manipulation transfer problem by
designing simulators. The task wishes to transfer human manipulations
to dexterous robot hand simulations and is inherently difficult due to
its intricate, highly-constrained, and discontinuous dynamics and the
need to control a dexterous hand with a DoF to accurately replicate hu-
man manipulations. Previous approaches that optimize in high-fidelity
black-box simulators or a modified one with relaxed constraints only
demonstrate limited capabilities or are restricted by insufficient simula-
tion fidelity. We introduce parameterized quasi-physical simulators
and a physics curriculum to overcome these limitations. The key ideas
are 1) balancing between fidelity and optimizability of the simulation via
a curriculum of parameterized simulators, and 2) solving the problem in
each of the simulators from the curriculum, with properties ranging from
high task optimizability to high fidelity. We successfully enable a dex-
terous hand to track complex and diverse manipulations in high-fidelity
simulated environments, boosting the success rate by 11%+ from the
best-performed baseline. The project website is available at QuasiSim.
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1 Introduction

Advancing an embodied agent’s capacity to interact with the world represents
a significant stride toward achieving general artificial intelligence. Due to the
substantial costs and potential hazards of setting up real robots to do trial
and error, the standard approach for developing embodied algorithms involves
learning in physical simulators [9, 11,17, 19, 23, 34, 35] before transitioning to
real-world deployment. In most cases, physical simulators are treated as black
boxes, and extensive efforts have been devoted to developing learning and op-
timization methods for embodied skills within these black boxes. Despite the
considerable progress [2,6-8,12,14,15,22,25,27,29, 30,36, 38,40,41], the question
like whether the simulators used are the most suitable ones is rarely discussed. In
this work, we investigate this issue and illustrate how optimizing the simulator
concurrently with skill acquisition can benefit a popular yet challenging task in
robot manipulation — dexterous manipulation transfer.

The task aims at transferring human-object manipulations to a dexterous
robot hand, enabling it to physically track the reference motion of both the
hand and the object (see Fig. 1). It is challenged by 1) the complex, highly con-
strained, non-smooth, and discontinuous dynamics with frequent contact estab-
lishment and breaking involved in the robot manipulation, 2) the requirement of
precisely controlling a dexterous hand with a high DoF to densely track the ma-
nipulation at each frame, and 3) the morphology difference. Some existing works
rely on high-fidelity black-box simulators, where a small difference in robot con-
trol can result in dramatically different manipulation outcomes due to abrupt
contact changes, making the tracking objective highly non-smooth and hard to
optimize [4,6,8,29,30]. Other approaches attempt to improve optimization by
relaxing physical constraints, with a primary focus on smoothing out contact
responses [3, 18,26, 33, 34]. However, their dynamics models may significantly
deviate from real physics [26], hindering skill deployment. Consequently, we ask
how to address the optimization challenge while preserving the high fidelity of
the simulator.

Our key insight is that a single simulator can hardly provide both high fidelity
and excellent optimizability for contact-rich dexterous manipulations. Inspired
by the line of homotopy methods [10, 20, 21, 37], we propose a curriculum of
simulators to realize this. We start by utilizing a quasi-physical simulator to
initially relax physical constraints and warm up the optimization. Subsequently,
we transfer the optimization outcomes to simulators with gradually tightened
physical constraints. Finally, we transition to a physically realistic simulator for
skill deployment in realistic dynamics.

To realize this vision, we propose a family of parameterized quasi-
physical simulators for contact-rich dexterous manipulation tasks. These sim-
ulators can be customized to enhance task optimizability while can also be tai-
lored to approximate realistic physics. The parameterized simulator represents
an articulated multi rigid body as a parameterized point set, models contact
using an unconstrained parameterized spring-damper, and compensates for un-
modeled effects via parameterized residual physics. Specifically, the articulated
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multi-body dynamics model is relaxed as the point set dynamics model. An ar-
ticulated object is relaxed into a set of points, sampled from the ambient space
surrounding each body’s surface mesh. The resulting dynamics model combines
the original articulated dynamics with the mass-point dynamics of each individ-
ual point. Parameters are introduced to control the point set construction and
the dynamics model. The contact model is softened as a parameterized spring-
damper model [3, 13,24, 26, 32] with parameters introduced to control when to
calculate contacts and contact spring stiffness. The residual physics network
compensate for unmodeled effects from the analytical modeling [16]. The pa-
rameterized simulator can be programmed for high optimizability by relaxing
constraints in the analytical model and can be tailored to approximate realistic
physics by learning excellent residual physics. We demonstrate that the challeng-
ing dexterous manipulation transfer task can be effectively addressed through
curriculum optimization using a series of parameterized physical simulators.

We demonstrate the superiority of our method and compare it with previ-
ous model-free and model-based methods on challenging manipulation sequences
from three datasets, describing single-hand or bimanual manipulations with
daily objects or using tools. We conduct dexterous manipulation transfer on
two widely used simulators, namely Bullet [9] and Isaac Gym [23] to demon-
strate the generality and the efficacy of our method and the capability of our
quasi-physical simulator to approximate the unknown black-box physics model
in the contact-rich manipulation scenario (Fig. 1). We can track complex manip-
ulations involving non-trivial object motions such as large rotations and com-
plicated tool-using such as using a spoon to bring the water back and forth.
Our approach successfully surpasses the previous best-performed method both
quantitatively and qualitatively, achieving more than 11% success rate than the
previous best-performed method. Besides, optimizing through the physics cur-
riculum can significantly enhance the performance of previously under-performed
RL-based methods, almost completing the tracking problem from failure, as
demonstrated in Fig. 1. This indicates the universality of our approach to em-
bodied AI through optimization via a physics curriculum. Thorough ablations
are conducted to validate the efficacy of our designs.

Our contributions are three-fold:
— We introduce a family of parameterized quasi-physical simulators that can

be configured to relax various physical constraints, facilitating skill optimiza-
tion, and can also be tailored to achieve high simulation fidelity.

— We present a quasi-physics curriculum along with a corresponding opti-
mization method to address the challenging dexterous manipulation transfer
problem.

— Extensive experiments demonstrate the effectiveness of our method in trans-
ferring complex manipulations, including non-trivial object motions and
changing contacts, to a dexterous robot hand in simulation.

2 Method

Given a human manipulation demonstration, composed of a human hand mesh
trajectory and an object pose trajectory {#H,O}, the goal is transferring the
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Fig. 2: The parameterized quasi-physical simulator relaxes the articulated multi
rigid body dynamics as the parameterized point set dynamics, controls the contact
behavior via an unconstrained parameterized spring-damper contact model, and com-
pensates for unmodeled effects via parameterized residual physics networks. We tackle
the difficult dexterous manipulation transfer problem via a physics curriculum.

demonstration to a dexterous robot hand in simulation. Formally, we aim to
optimize a control trajectory A that drives the dexterous hand to manipulate the
object in a realistic simulated environment so that the resulting hand trajectory
#H and the object trajectory @ are close to the reference motion {#,®}. The
problem is challenged by difficulties from the highly constrained, discontinuous,
and non-smooth dynamics, the requirement of controlling a high DoF dexterous
hand for tracking, and the morphology difference.

Our method comprises two key designs to tackle the challenges: 1) a family of
parameterized quasi-physical simulators, which can be programmed to enhance
the optimizability of contact-rich dexterous manipulation tasks and can also be
tailored to approximate realistic physics (Section 2.1), and 2) a physics curricu-
lum that carefully adjusts the parameters of a line of quasi-physical simulators
and a strategy that solves the difficult dexterous manipulation transfer task by
addressing it within each simulator in the curriculum (Section 2.2).

2.1 Parameterized Quasi-Physical Simulators

Our quasi-physical simulator represents an articulated multi-body, i.e., the robotic
dexterous hand, as a point set. The object is represented as a signed distance
field. The base of the simulator is in an analytical form leveraging an uncon-
strained spring-damper contact model. Parameters are introduced to control the
analytical relaxations on the articulated rigid constraints and the softness of the
contact model. Additionally, neural networks are introduced to compensate for
unmodeled effects beyond the analytical framework. We will elaborate on each
of these design aspects below.

Parameterized point set dynamics. We consider relaxing an articulated
multi rigid body into a mass-point set sampled from the ambient space around
each body. Each point is regarded as attached to the body where it is sampled
from and is both self-actuated and can be actuated via joint motors. A parameter
« is introduced to control the point set construction and the dynamics. The point
set lets an articulated rigid object behave like a deformable object with a larger
action space to adjust the state, thereby easing the optimization problem.
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Parameterized residual physics. The analytical designs facilitate relaxation
but may limit the use of highly sophisticated and realistic dynamics models,
deviating from real physics. To address this, the final component of our quasi-
physical simulator is a flexible neural residual physics model [1, 16, 28].
Specifically, we propose to employ neural networks to learn and predict resid-
ual contact forces and friction forces based on contact-related information. For
detailed residual contact force prediction, we introduce a local contact network
fioew that utilizes contact information identified in the parameterized contact
model and predicts residual forces between each contact pair. To address discrep-
ancies in contact region identification between the parameterized contact model
and real contact region, we also incorporate a global residual network fy,, ..,
that predicts residual forces and torques applied directly to the object’s center
of mass.

2.2 Dexterous Manipulation Transfer via a Physics Curriculum

Building upon the family of parameterized quasi-physical simulators, we present
a solution to the challenging dexterous manipulation transfer problem through
a physics curriculum. This curriculum consists of a sequence of parameterized
simulators, ranging from those with minimal constraints and the softest con-
tact behavior to increasingly realistic simulators. We address the problem by
transferring the manipulation demonstration to the dexterous hand within each
simulator across the curriculum progressively.

3 Experiments

We conduct extensive experiments to demonstrate the effectiveness of our method.
The evaluation dataset is constructed from three HOI datasets with both single-
hand and bimanual manipulations (with rigid objects), with complex manipu-
lations with non-trivial object movements, and rich and changing contacts in-
volved. We use Shadow hand [31] and test in two simulators widely used in the
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Fig. 4: Qualitative comparisons. Please refer to our website and
for animated results.

embodied Al community: Bullet [9] and Isaac Gym [23]. We compare our method
with both model-free approaches and model-based strategies and demonstrate
the superiority of our method both quantitatively and qualitatively. We can track
complex contact-rich manipulations with large object rotations, back-and-forth
object movements, and changing contacts successfully in both of the two simula-
tors, while the best-performed baseline fails (see Section 3.1, Fig. 4). On average,
we boost the tracking success rate by 11%+ from the previous best-performed
(see Section 3.1).

3.1 Dexterous Manipulating Tracking

We conducted thorough experiments in two widely used simulators [9,23]. We
treat them as realistic simulated physical environments with high fidelity and
wish to track the manipulation in them. In summary, we can control a dexterous
hand to complete a wide range of the manipulation tracking tasks with non-
trivial object movements and changing contacts. As presented in Table 1, we
can achieve significantly higher success rates calculated under three thresholds
than the best-performed baseline in both tested simulators. Fig. 4 showcases
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Table 1: Quantitative evaluations and comparisons to baselines. Bold red
numbers for best values and italic blue values for the second best-performed ones.

Simulator Method Rerr (°, 1) Tere (em, ) MPJPE (mum,|) CD (mm,]) Success Rate (%, 1)
Model DGrasp-Base 44.24 5.82 40.55 16.37 0/13.73/15.69
Fve DGrasp-Tracking 44.45 5.04 37.56 14.72 0/15.69/15.69
r DGrasp-Tracking (w/ curric.) 33.86 4.60 30.47 13.53 7.84/28.583/37.25
Bullet Model Control-VAE 42.45 2.73 25.21 10.94 0/15.68/23.53
Based MPC (w/ base sim.) 32.56 3.67 2/.62 10.80 0/15.68/31.37
MPC (w/ base sim. w/ soften) ~ 51.89 3.63 28.26 11.31 0/21.57/37.25
Ours 24.21 1.97 24.40 9.85  27.45/37.25/58.82
Model DGrasp-Base 36.41 4.56 50.97 18.78 0/7.84 /7.84
F° ®" DGrasp-Tracking 44.71 5.57 41.53 16.72 0/0/7.84
® DGrasp-Tracking (w/ curric,)  38.75 5.13 40.09 16.26 31.37
Isaac Gym Model Control-VAE 35.40 4.61 27.63 13.17 0/13.73/29.41
B;S; MPC (w/ base sim.) 37.23 473 23.19 9.75 0/15.69/31.57
MPC (w/ base sim. w/ soften)  36.40 4.46 23.27 10.34 0/9.80/23.53
Ours 25.97 2.08 25.33 10.81  21.57/43.14/56.86

qualitative examples and comparisons. Please check out our website and video
for animated results.

4 Conclusion

In this work, we investigate creating better simulators for solving complex robotic
tasks involving complicated dynamics where the previous best-performed op-
timization strategy fails. We present a family of parameterized quasi-physical
simulators that can be both programmed to relax various constraints for task
optimization and can be tailored to approximate realistic physics. We tackle the
difficult manipulation transfer task via a physics curriculum.
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