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Abstract

There is a gap in the understanding of occluded objects
in existing large-scale visual language multi-modal models.
Current state-of-the-art multi-modal models fail to provide
satisfactory results in describing occluded objects through
universal visual encoders and supervised learning strate-
gies. Therefore, we introduce a multi-modal large lan-
guage framework and corresponding self-supervised learn-
ing strategy with support of 3D generation. We start our ex-
periments comparing with the state-of-the-art models in the
evaluation of a large-scale dataset SOMVideo [18]. The
initial results demonstrate the improvement of 16.92% in
comparison with the state-of-the-art VLM models.

1. Introduction
The latest multi-modal dialogue models [1, 3, 4, 6–9, 11,
12, 15–17, 19], such as Mini-Gemini [10] and GPT-4o [13]
showed that despite significant progress, their description of
large-scale language models for occluded objects remains
unsatisfactory.

Therefore, we propose OCC-MLLM-Alpha, a visual lan-
guage model (shown in Figure 1) designed to understand
occluded objects in image conversations. To achieve this
goal, we developed a visual encoder module consisting of
the common CLIP model [14] and the proposed 3D model
[5]. Additionally, a self-supervised test-time learning strat-
egy with the support of 3D generation is proposed.

2. Method
First, we formulate the generative process of the proposed
MLLM, named Occlusion-Aware Multimodal Large Lan-
guage Model (OCC-MLLM-Alpha), for occlusion-aware
descriptions of objects at hand. Second, we introduce the
formulation details of each proposed OCC-MLLM-Alpha
module. Third, the proposed occlusion loss is calculated,
and an occlusion-aware training strategy for large multi-

modal language models is introduced. Fourth, a self-
supervised test-time training strategy is designed to facili-
tate the understanding of occluded objects. We represent
the generation process of the proposed OCC-MLLM-Alpha
into three parts: input formulation, model forwarding, and
decoding.

2.1. Formulation of OCC-MLLM-Alpha Genera-
tion

2.1.1 Input Formulation

The input of the proposed OCC-MLLM-Alpha consists of
images and text. Setting aside specific architectural differ-
ences, OCC-MLLM-Alpha generally applies a visual en-
coder module to extract visual tokens from raw images
and uses a cross-modal mapping module to map these to-
kens to text space as the input of LLM. The mapped vi-
sual tokens are used as part of the LLM input along with
the text input. The visual tokens are represented as xv =
{x0, x1, . . . , xN−1}. N represents the length of the vi-
sual token, which is a fixed number in most cases. Sim-
ilarly, the input text is tokenized and expressed as xp =
{xN , xN+1, . . . , xM+N−1}. The image and text tokens
are then concatenated as the final input {xi}T−1

t=0 where
T = N +M .

2.1.2 Model Forward

First, OCC-MLLM-Alpha is trained in an auto-regressive
manner using causal attention masks, where each token pre-
dicts the next token based on the previous token, formally:

h = FMLLMOcc (xi)

h = {h0, h1, . . . , hT−1}
(1)

where h represents the output hidden states of the last layer
of the FMLLMOcc .

Second, the hidden state h is projected by applying the
vocabulary head H via FMLLMOcc . Get the predicted log-



Figure 1. Overview of the Proposed Multi-Modal Vision-Language Model for the Occluded Objects with Self-Supervised Test-Time
Learning.

its (probability) of the next token, and the calculation is as
follows:

p (xt | x<t) = SoftMax [H (ht)]xt
, xt ∈ X , (2)

where x<t is represented to simplify the sequence
{xi}t−1

i=0 and X is represented as the whole vocabulary set.

2.1.3 Decoding

After applying logits p (xt | x<t), several decoding strate-
gies have been deployed, including greedy decoding, Beam
Search [2], etc. The decoded tokens are concatenated to the
last one of the original input text for the next generation
round until the end of the generation. The proposed OCC-
MLLM-Alpha applies a beam search strategy [2], which is
a decoding strategy based on cumulative scores.

2.2. Dual Visual Encoder Module

In the forwarding process of the proposed OCC-MLLM-
Alpha, we designed a new visual encoder module, which
consists of two visual encoders. The first visual encoder
is the common CLIP [14], which is used to extract the vi-
sual embedding (token) xv from the RGB input xv1 without
a specific occlusion representation. The second visual en-
coder is used to provide a representation of the occluded
object visual embedding(token) xv2. Then, the combined
representation is calculated as follows:

xv = α · xv1 + (1− α) · xv2 (3)
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Figure 2. Overview of the proposed second 3D reconstruction
module f3D . This method reconstructs a mesh of occluded ob-
jects from a single RGB image

where α ∈ [0, 1] represents the transparency level of the
visual embedding, xv represents the merged embedding.

2.3. Visual Embedding For Occluded Objects

For the second visual encoder to provide the visual embed-
ding (token) xv2 of the occluded object, we designed the
second visual encoder f3D [10], which is composed as fol-
lows:

In the first step, the representation of the semantic cues,
hand-articulated features and color features [10] of the oc-
cluded object are calculated (shown in Figure 2). These
representations are merged into a combination of visual fea-



Figure 3. Dataset example. The object is occluded. There are five instructions and five corresponding descriptions.

tures. The calculation is represented as the following:

fcombined = fs(fcues + fhand + fcolor)

SDFobject(p) = fo(fcombined),
(4)

where fs and fo are the representation accumulation func-
tion and SDF decoder, respectively, p represents the 3D
point.

In the second step, we apply the calculated SDFs of ob-
jects for 3D mesh reconstruction (shown in Figure 2). The
computed object SDFobject(p) already contains the visual
representation of the object under occlusion. We reconstruct
the 3D mesh Mobj of the occluded object and then project
it into the 2D RGB space Iobj . To facilitate the use of this
2D visual representation Iobj with large language models,
we use the visual embedding of xv2 as the extracted em-
bedding of the CLIP model [14]. The above calculation is
expressed as follows:

Mobj = frecon(SDFobject(p))

Iobj = fproj(Mobj)

xv2 = fCLIP (Iobj)

(5)

2.4. Test-Time Adaption Based on Self-Supervised
Learning.

To enhance the representation of occluded objects for the
multi-modal large language model in the test time, we pro-
pose a self-supervised learning strategy with the support of

3D generation module. Specifically, a CLIP model [14] is
adopted as the reward model and provides feedback for the
fine-tuned VLM [10]. Given each test sample, with the sup-
port of 3D generation module [18], the VLM [10] is forced
to maximize the CLIP [14] reward between the input and
sampled results from the fine-tuned VLM [10] output dis-
tribution.

The self-supervised training is conducted in the rein-
forcement learning with rewards. In details, the reward is
represented as the following:

R(t,v) = CLIP−S(t,v)− Et∼P [CLIP−S(t,v)] (6)

Where CLIP−S(t,v) is the self-supervised
clip-score on the base of contrastive learning [14],
Et∼P [CLIP−S(t,v) is the corresponding expectation.
Where v is the image and t is the corresponding text.

2.5. Multi-stage Leaning Strategy.

At the first stage, the VLM [10] is fine-tuned on the train-
ing dataset [18] to perform five specific description tasks
(Figure 3). At the second stage, the proposed 3D gen-
eration module is trained on the training dataset [18] for
3D reconstruction from a single image. At the third stage,
to enhance the representation of the occluded objects, the
proposed test-time self-supervised adaption strategy is con-
ducted to force the VLM [10] in the combination with the
3D generation module [18].



3. Dataset
We use a large-scale dataset SOMVideo [18] containing oc-
cluded objects to train the proposed multi-modal large lan-
guage model to understand them.

3.1. Dataset Overview

This dataset SOMVideo [18] consists of a total of 141, 550
scenes with each hand-object scene captured by 10 differ-
ent views. Each corresponding occlusion-free video clip for
supervision is also captured from the same 10 view angles.
It also contains 141, 550 × 10 × 5 image-text pairs. This
dataset was released to describe occluded objects, and to the
best of our knowledge, it is for text descriptions of occluded
objects. Besides, we manually calculate the occlusions that
about a quarter of the objects are occluded on average,

It is important to note that the annotations(text descrip-
tion) of each sample are manually checked. Furthermore,
we apply the proposed dataset in the instruction tuning(fine-
tuned) stage. All input images are resized to 224 × 224.
(Shown in Figure 3).

4. Experiments and Results
4.1. Experiments on GPT4o [13]

We first evaluate the performance of GPT4o [13] on the test-
ing portion of the proposed dataset. Four instructions are
applied to test each sample in the testing dataset. And the
accuracy is demonstrated in the Table 1. As Table 1 shows,
the accuracy of the GPT4o [13] is relatively low. In detail,
the accuracy for the instruction 1(What’s the object in the
hand?) is 0.1306, the accuracy for the instruction 2(Is the
object in the hand round?) is 0.6910, the accuracy for the
instruction 3(Is the object in the hand long?) is 0.6521, the
accuracy for the instruction 4(Is the object in the hand thin?)
is 0.5839. It demonstrates that GPT4o [13] cannot achieve
satisfactory results for the occluded objects.

4.2. Experiments on Mini-Gemini [10]

Then, we fine-tuned one epoch for Mini-Gemini [10] using
the training set of SOMVideo [18]. The hyper-parameter
settings for fine-tuning Mini-Gemini [10] are set as the fol-
lowing: the batch size is 16; The learning rate is 0.00002;
The weight attenuation coefficient is 0. As Table 2 shows,
in comparison with GPT4o [13], the accuracy is higher for
instruction 1, the accuracy is a little higher for instruc-
tion 2, instruction 3 and instruction 4. The visual en-
coder of the proposed Mini-Gemini [10] is the common clip
encoder[14]. (Shown in Figure 1). It demonstrates that fine-
tuning on a classical multi-modal large language model [10]
with a single clip encoder [14] improves the accuracy of the
instructions from 0.1306 to 0.4981. However, the accuracy
of 0.4981 is still not satisfactory.

4.3. Experiments on the Proposed 3D Reconstruc-
tion Module [18]

We next explore the capability of the 3D reconstruction
module [18] for the test description of the occluded objects.
At the stage 1, we train the 3D reconstruction module [18]
for the task of 3D reconstruction from a single image. At
stage 2, we render the occluded object mesh from the 3D
reconstruction module and then project it to 2D RGB space.
The rendered RGB image is then described using the fine-
tuned VLM [10] for each test image.

In the testing phase, we calculate the accuracy of the oc-
cluded objects given a single image of the occluded objects.
As Table 2 demonstrates, in comparison with the fine-tuned
VLM [10], the accuracy of the instruction 1 for falling test-
ing samples [10] is 0.1692. In detail, there are 6258 oc-
cluded samples in the testing set [18], the fine-tuned VLM
[10] achieves 4366 correct prediction for the object category
classification. Then, the 3D reconstruction module [18]
achieves 1128 correct prediction for the left 1892 falling
object samples.

Table 1. Experimental results of GPT4o and Mini-Gemini

Model GPT4o(Zero-shot) Mini-Gemini

Instruction 1 0.1306 0.4981
Instruction 2 0.6910 0.7284
Instruction 3 0.6521 0.7325
Instruction 4 0.5839 0.7139

Table 2. Accuracy of classification (Instruction 1) for the 3D
reconstruction module among falling samples from fine-tuned
VLM [18]

Encoder Task Accuracy

3D Reconstruction [18] Instruction 1 +0.1692

4.4. Future Experiments

As the above results demonstrated, the proposed 3D recon-
struction module [18] is promising for facilitating the under-
standing of the occluded objects. We plan to further explore
this capability in subsequent experiments.

Firstly, the 3D reconstruction module [18] continues to
be fine-tuned for the task of the instruction 2, instruction 3
and instruction 4. Secondly, the 3D reconstruction module
[18] is merged with the Vision-Language Model(VLM) [10]
in a self-supervised learning framework.
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