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Abstract

We present a contrastive learning framework based on
in-the-wild hand images tailored for pre-training 3D
hand pose estimators, dubbed HandCLR. Pre-training on
large-scale images achieves promising results in various
tasks, but prior 3D hand pose pre-training methods have not
fully utilized the potential of diverse hand images accessible
from in-the-wild videos. To facilitate scalable pre-training,
we first prepare an extensive pool of hand images from
in-the-wild videos and design our method with contrastive
learning. Specifically, we collected over 2.0M hand images
from recent human-centric videos, such as 100DOH and
Ego4D. To extract discriminative information from these
images, we focus on the similarity of hands; pairs of similar
hand poses originating from different samples, and propose
a novel contrastive learning method that embeds similar
hand pairs closer in the latent space. Our experiments
demonstrate that our method outperforms conventional
contrastive learning approaches that produce positive pairs
sorely from a single image with data augmentation. We
achieve significant improvements over the state-of-the-art
method in various datasets, with gains of 15% on FreiHand,
10% on DexYCB, and 4% on AssemblyHands.

1. Introduction
Hands are a trigger for us to interact with the world, as

seen in various human-centric videos. Precise recognition
of hand states, such as 3D keypoints, is crucial for video
understanding [34,39], AR/VR interfaces [18,40], and robot
learning [6, 31]. To this end, 3D hand pose estimation has
been studied through constructing labeled datasets [6, 26,
27, 45] and advancing pose estimators [3, 12, 13, 22, 30].
However, utilizing large-scale, unannotated hand videos for
pre-training remains underexplored, while vast collections
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of such videos, like 3,670 hours of videos from Ego4D [16]
and 131 days from 100DOH [35], are available.

Some works utilize unlabeled hand images for 3D hand
pose pre-training using contrastive learning like SimCLR [9],
which maximizes agreement between positive pairs while
repelling negatives. Spurr et al. [38] introduce pose equiv-
ariant contrastive learning (PeCLR) by aligning geometry
in latent space after affine transformations for input images.
However, both SimCLR and PeCLR create positive pairs
from a single sample by applying augmentation, limiting the
gains from positive pairs as their hand appearance and back-
grounds are identical. Ziani et al. [44] extend the contrastive
learning framework to video sequences by treating tempo-
rally adjacent frames as positive pairs. However, in-the-wild
videos can challenge tracking hands across frames, espe-
cially in egocentric views where hands may be unobservable
due to camera motion. In addition, adjacent frames still pose
limited appearance variation of hands and backgrounds.

In this work, we introduce a novel contrastive learning
framework for 3D hand pose pre-training to leverage diverse
hand images in the wild, with the largest 3D hand pose
pre-training set to date. We collected 2.0M hand images
from in-the-wild videos, specifically from Ego4D [16] and
100DOH [35], using an off-the-shelf hand detector [24]. Our
pre-training set significantly exceeds the scale of prior works
by two orders of magnitude, such as the 32-47K images
in [38] and 86K images from 100DOH in [44].

Our method focuses on learning discriminative informa-
tion by leveraging the similarity of hands from different
domains. Unlike SimCLR and PeCLR, we observe that it is
further informative to learn from positive pairs with similar
foreground hands but from different images. As shown in
Fig. 1, our positive pairs based on different images offer
additional information gains from different types of object
interactions, backgrounds, and hand appearances. Specifi-
cally, we use an off-the-shelf 2D hand pose estimator [24] to
identify similar hands from the pre-training set.



Figure 1. The pipeline of pre-training and fine-tuning in 3D hand pose estimation. (Left) Previous pre-training methods (e.g.,
PeCLR [38]) learn from positive pairs originating from the same with different augmentations and fine-tune the network on a dataset. (Right)
Our method is designed to learn from positive pairs with similar foreground hands, sampled from a pool of hand images in the wild.

Our contributions are threefold: 1) We construct a large-
scale in-the-wild hand dataset for 3D hand pose pre-training.
2) We propose a pre-training framework using similar hand
pairs via contrastive learning. 3) Our model achieves state-
of-the-art performance across multiple datasets.

2. Related Work
3D hand pose estimation: The task of 3D hand pose estima-
tion aims to regress 3D keypoints of hand joints. Annotating
3D hand poses is challenging, which allows us to have lim-
ited labeled datasets [26], mostly constructed in controlled
laboratory settings [6, 25, 27, 45]. Given this challenge, two
approaches have been proposed to facilitate learning from
limited annotations: pseudo-labeling [22,23,28,41] and self-
supervised pre-training [38, 44]. Pseudo-labeling methods
learn from pseudo-ground-truth assigned on unlabeled im-
ages [22, 23, 28, 41]. Alternatively, pre-training methods
first pre-train an encoder with contrastive learning on unla-
beled images and then fine-tune on labeled images [38, 44].
While prior works use relatively small pre-training sets (e.g.,
32-47K images in [38] and 86K images in [44]), our work
emphasizes leveraging in-the-wild images on a large scale.
We collected hand images from large human-centric datasets
such as Ego4D [16] and 100DOH [35], expanding our pre-
training set to 2.0M images.
Contrastive learning: The framework of contrastive learn-
ing has emerged as a powerful self-supervised learning,
bringing positive samples closer while pushing negative
samples apart [11, 20, 29, 33, 36, 37]. Standard methods
generate positive samples from individual images with data
augmentation (i.e., self-positives) [4,5,10,21,32], but restrict
the learning of explicit relationships between samples. To
address this, Zhang et al. propose a relaxed extension of self-
positives, non-self-positives [42], which share similar charac-

teristics (e.g., same scene [1,2,14,19] or instance [7,8,15,17])
but originate different images. This enables the incorpora-
tion of diverse inter-sample consistency and facilitates the
learning of semantics more easily. Skeleton-based action
recognition methods identify non-self-positives by searching
similar human skeletons [42], whereas it relies on online
mining, increasing computational overhead in training. In
contrast, our approach creates non-self-positives using 2D
hand keypoints offline for avoiding the overhead and scaling
pre-training with any large data.

3. Method

Our approach called HandCLR aims to pre-train an en-
coder of a 3D hand pose estimator with large human-centric
videos available in the wild. We first construct the pre-
training set from egocentric and exocentric hand videos
(Sec. 3.1), then find similar hand images to define positive
pairs (Sec. 3.2), and finally incorporate these positive pairs
into a contrastive learning framework (Sec. 3.3).

3.1. Data preprocessing

Our preprocessing involves creating a set of valid hand
images for pre-training, which is sampled from a dataset
with N videos, {v1, v2, . . . , vN}. We use an off-the-shelf
hand detector [35] to select valid frames with hands. Given
an image of a video, Ifull ∈ vi, the model detects the ex-
istence of the hand and gives hand crops enclosing either
hand identity (right/left) from Ifull. To avoid bias regarding
hand identity, we balance the number of right and left hand
crops and convert all crops to the right, allowing us to ad-
dress all crops equally. Then, we create a frame set for each
video as Fi = {Ii,1, Ii,2, . . . , Ii,Ti}, where Ii,j ∈ RH×W×3

represents the processed crop with height H and width W ,



and Ti is the number of crops in the video vi. The height
H and width W are defined post-resize to give the uniform
image size. Using this frame set Fi, the video dataset can
be re-represented as V = {F1,F2, . . . ,FN}. Specifically,
we processed two datasets, Ego4D [16] and 100DOH [35],
comprising 8K and 21K videos, respectively.

3.2. Mining similar hands

Our preliminary experiments indicate that learning from
positive pairs with similar foreground hands but from dif-
ferent images could provide additional information gains
compared to conventional contrastive learning [9, 38]. Here
we construct a mining algorithm for similar hands from V
by focusing on pose similarity between hand images. We
first extract 2D pose from I , embedding in the latent space,
and design a scheme for effective positive sample mining.
Pose embedding: To compute the hand pose similarity ro-
bustly, we obtain a D-dimensional embedding of 2D hand
keypoints, p ∈ RD, for each image I . Using an off-the-shelf
2D hand pose estimator ϕ [24], we predict 2D keypoints for
21 joints. We use a concatenated 42-dimensional vector as
the output of ϕ for later use. As these 2D keypoints are prone
to be noisy, we apply PCA-based dimensionality reduction
to project the vector into a lower-dimensional space of size
D. Given the PCA projection matrix M ∈ R42×D, the pose
embedding p is calculated as p = MTϕ(I). This process
mitigates noise and provides a more robust representation.
We empirically choose D = 14 for our experiments.
Mining: This step is designed to identify a positive sample
J ∈ RH×W×3 paired with a query image I . We denote
the similarity mining logic as J = SiM(I). When using
the closest sample in the PCA space, we encounter a trivial
solution I, J ∈ vi, where both images originate from the
same video vi. Similarly to [44], the supervision by positive
samples from the same video have less diversity in back-
grounds, hand appearances, and object interactions. Thus
we are motivated to find similar hands derived from different
video domains. Specifically, we search the minimum dis-
tance within the set of all frames except for vi, written as
Fexcl,i =

⋃N
k=1
k ̸=i

⋃Tk

j=1 Ikj . Given an query Ii,j where a j-th

image of a i-th video, the function SiM(·) is formulated as

SiM(Ii,j) = argminx∈Fexcl,i
d(MTϕ(x),MTϕ(Ii,j)),

(1)
where d(·, ·) is the Euclidean distance metric.

3.3. Contrastive learning

Given the positive samples (I, J) constructed by Sec. 3.2,
we describe feature extraction process and contrastive learn-
ing loss. Following [9,38], we treat all samples other than its
corresponding positive sample as negative samples. In our
framework, feature extraction is performed by two learn-
able components: an encoding head E(·) and a projec-

tion head g(·). We define image augmentation as T and
the entire model as f = g ◦ E. Given the positive pair
(I, J), feature extraction is performed as z = f(T(I)) and
z+ = f(T(J)). Since T introduces geometric transforma-
tions that may cause the misalignment between the image
and the feature spaces, we correct such error with the inverse
transformation T−1 as [38]. Finally, we use the NT-Xent
loss [9] for contrastive learning, enabling the feature align-
ment between z and z+. For fine-tuning, we initialize our
model with the pre-trained encoder E(·) and then fine-tune
with a 3D pose regressor on labeled datasets. The 3D re-
gressor involves 2D heatmap regression and 3D localization,
inspired by DetNet [43].

4. Experiments

In this section, we begin by detailing the datasets and
present our key experiments by comparing our results with
state-of-the-art methods.

4.1. Datasets

Pre-training datasets: We collected a large collection of
hand images from two major video datasets, Ego4D [16] and
100DOH [35], capturing egocentric and exocentric views re-
spectively. From Ego4D, a vast egocentric video dataset with
3,670 hours of footage, we extracted 1.0M hand images from
8K videos. Similarly, from the exocentric dataset 100DOH,
which includes 131 days of YouTube footage and 100K an-
notated hand-object interaction frames, we extracted 1.0M
hand images from 20K videos. These extensive datasets pro-
vide diverse hand-object interactions across different views.
Fine-tuning datasets: We conduct fine-tuning experiments
on three datasets with ground-truth 3D hand pose: Frei-
Hand [45], DexYCB [6], and AssemblyHands [27]. Frei-
Hand, with 130K training frames, includes both green screen
and real-world backgrounds, while DexYCB offers 582K
images of natural hand-object interactions in a controlled
laboratory setting. AssemblyHands, the largest of the three,
consists of 412K training and 62K test samples, collected
from egocentric perspectives in object assembly scenarios.

4.2. Results

As shown in Tab. 1, we compare our method with state-
of-the-art pre-training methods for 3D hand pose estimation
using the metrics of MPJPE (↓) and PCK-AUC (↑).
Pre-training results: We observe that our method signif-
icantly outperforms SimCLR and PeCLR across various
datasets under the same pre-training data setup. Specifically,
on the FreiHand dataset, our approach achieves a 15.3% im-
provement with Ego4D-1M pre-training. Furthermore, our
method demonstrates strong performance on larger datasets,
with a 10.53% gain on DexYCB and a 4.90% improvement
on AssemblyHands compared to PeCLR. These results con-



Method Pre-training FreiHand (Exo) [45] DexYCB (Exo) [6] AssemblyHands (Ego) [27]

MPJPE↓ PCK-AUC↑ MPJPE↓ PCK-AUC↑ MPJPE↓ PCK-AUC↑

SimCLR [9] 100DOH-1M 19.30 85.36 20.13 83.75 20.01 84.21
Ego4D-1M 19.36 85.09 20.22 83.50 20.32 83.85

PeCLR [38] 100DOH-1M 19.58 84.71 18.39 18.39 19.12 85.64
Ego4D-1M 19.07 85.62 18.99 85.40 19.20 85.57

HandCLR 100DOH-1M 16.73 88.66 17.34 87.84 18.50 86.56
Ego4D-1M 16.15 89.48 16.99 88.34 18.26 86.95

Ego4D-1M+100DOH-1M 15.79 90.04 16.71 88.86 18.23 86.90

Table 1. Comparison with the state of the art. We show 3D hand pose estimation accuracy (MPJPE↓) on the FreiHand (Exo) [45],
DexYCB (Exo) [6] and AssemblyHands (Ego) [27]. Our method achieves the best results across various pre-training datasets.

Pre-training size Method MPJPE ↓ PCK-AUC ↑

Ego4D-50K
SimCLR 53.94 42.54
PeCLR 47.42 49.85

HandCLR 35.32 63.35

Ego4D-100K
SimCLR 53.49 43.12
PeCLR 46.00 51.50

HandCLR 31.06 68.66

Ego4D-500K
SimCLR 49.91 47.61
PeCLR 43.18 54.15

HandCLR 28.27 72.97

Ego4D-1M
SimCLR 46.17 50.62
PeCLR 34.42 64.93

HandCLR 23.68 79.62

Table 2. Comparison with different pre-training data sizes.
We use 10% of the labeled FreiHand [45] dataset for fine-tuning.

firm that our model consistently achieves superior perfor-
mance across various pre-training datasets.

Performance on Ego & Exo hands: We evaluate how pre-
training with egocentric views (Ego4D) and exocentric views
(100DOH) affects the performance in datasets with their cor-
responding views, namely AssemblyHands for egocentric
and FreiHand and DexYCB for exocentric views. Interest-
ingly, matching pre-training viewpoints does not consistently
enhance performance, indicating that the view gaps have
limited effects. Instead, factors like dataset diversity and
the characteristics of pre-training methods are more crucial
in determining effectiveness. We also assess pre-training
performance using both perspectives, Ego4D and 100DOH.
Combining the two datasets, the last row of Tab. 1, leads to
the best performance in all three datasets, underscoring the
potential of enriching data diversity with different camera
characteristics.

Effect of different pre-training data sizes: We study results
with different sizes of pre-training data, namely 50K, 100K,
500K, and 1M in Tab. 2. We specifically test the pre-trained
networks on limited labeled data, i.e., 10% of FreiHand. This
shows that HandCLR consistently improves in all settings,
with gains increasing further with more pre-training data.

Figure 2. Comparison with different data availability in fine-
tuning. Variations in the percentage of labeled data correspond
to different subsets of the FreiHand [45] dataset, following the
experimental design in [38].

Results in smaller fine-tuning sets: Fig. 2 illustrates the
MPJPE performance comparison of three methods under dif-
ferent proportions of labeled data, namely 10%, 20%, 40%,
and 80% in FreiHand. The results show that our HandCLR
method performs particularly well in a limited data regime,
such as 10% and 20%, compared to the baselines.

5. Conclusion
We introduce a contrastive learning framework for pre-

training 3D hand pose estimators using the largest in-the-
wild pre-training set. Our approach leverages similar hand
pairs from diverse videos, significantly enhancing the in-
formation gained during pre-training over existing meth-
ods. Experiments show our method achieves state-of-the-art
performance in 3D hand pose estimation across multiple
datasets. This work demonstrates the benefits of pre-training
with large-scale in-the-wild images and lays the foundation
for future research on using diverse human-centric videos to
improve the robustness of 3D hand pose estimation.
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