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Abstract. We propose a new interacting hand pose transfer model,
IHPT, which is a diffusion-based approach designed to transfer hand
poses between source and target images. IHPT can generate a new target
image with the target hand pose while maintaining the source image’s
texture and quality, leading to improved semantic understanding and
generalizability in generating target hand poses. Experiments show that
IHPT produces physically plausible and robust results for various text
prompts and poses. Additionally, training a 3D hand mesh reconstruc-
tion network with IHPT-generated images enhances the performance in
real-world scenarios, addressing the lack of in-the-wild 3D hand datasets
and bridging gaps between indoor and outdoor environments.
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1 Introduction

As large-scale foundation models [1H4] are developed, the Al community has
evolved radically and tremendously. Therefore, they greatly impact multi-modal
understanding, zero-shot learning, and transfer learning. Unfortunately, the cor-
relation between hand-related research and foundation models is quite weak. In
particular, after we discovered Stable Diffusion (SD) |4] generates hands bizarrely
and weirdly, the need for study on foundation models with hand-related field has
emerged.

Accordingly, several diffusion-based hand generation models [5H16] have been
proposed in recent years. However, there are no studies for the hand pose transfer
among them. Note that the pose transfer is a task of generating the target
image from the target pose based on the source image. It has a wide range of
applications including entertainment, virtual reality, fashion e-commerce, and
human-computer interaction. Although it has been actively studied with respect
to the person image synthesis [17H22], fewer studies for the hand image synthesis
have been explored.
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Fig. 1: Interacting hand pose transfer. It aims to generate a new target image similar
to the ground-truth by transferring the hand of the source image and the pose of the
target pose.

Thus, we first propose a diffusion-based interacting hand pose transfer model,
named IHPT, as shown in Fig. [} Specifically, IHPT first makes the background
of the source image based on the text prompt by leveraging the visual fidelity
of the large-scale pre-trained SD. Next, IHPT generates a new target image for
a given target pose, while maintaining the texture, complexity, and quality of
the background-added source hand image. Therefore, IHPT leads to maximizing
semantic understanding of the source image by enhancing the generalizability of
target hand image generation.

In the experiments, IHPT demonstrates the capability of hand image transfer
with more physically plausible results. In particular, THPT shows robust image
generation, given any text prompts and target poses. Moreover, we addition-
ally trained off-the-shelf 3D interacting hand mesh reconstruction network
with images generated by IHPT. As a result, the improvement of performance
is verified on in-the-wild scenes. It implies generating diverse in-the-wild hand
images with ITHPT can alleviate the lack of in-the-wild 3D hand datasets and
overcome domain gaps between indoor and outdoor environments, leading to
make a positive contribution to downstream applications.

2 Method

We introduce a novel diffusion-based interacting hand pose transfer model, IHPT.
As shown in Fig. [2| THPT is composed of three modules: (1) Background Image
Generator, (2) Source Image Generator, and (3) Target Image Generator.

2.1 Background Image Generator (BIG)

BIG is a module that generates a new background image I, from a given text
prompt 7. It is designed based on Stable Diffusion , so that we can create
high-quality and faithful images. Moreover, since Ip,.r is utilized as the input
of Source Image Generator to generate various source images, our model can
contribute to the downstream task, such as 3D hand mesh reconstruction in the
wild. BIG can be expressed as follows:

Tpack = BIG(T) (1)
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Fig. 2: The overall pipeline of IHPT. IHPT has three modules: Background Image
Generator, Source Image Generator, and Target Image Generator.

2.2 Source Image Generator (SIG)

SIG is a module that generates a new source image I;ource from the background
image Ipqck, the hand image Ipqnq, and the corresponding mesh image I,esh-
Specifically, I,esn can be obtained by projecting MANO [24]-based 3D label
into the 2D image space. Hence, by thresholding the intensity of pixels of I,,esh,
we can fill high-intensity pixels with I},,q4 and low-intensity pixels with Ip,cx to
make [lsource. In other words, it is possible to generate Isoyrce reflecting T and
Ihand. SIG can be expressed as follows:

Isource = SIG<Iback; Ihand; Imesh)- (2>

2.3 Target Image Generator (TIG)

TIG is a module that creates a generated target image based on the source image
and the target pose. For the training phase, note that we notate variables with A
(i.e., hat) for readability. First, the source image Isoum;,, the source pose P.;om,cp,
the ground truth target image Imrget, and the target pose Ptarget are needed.
Specifically, we extract the feature map fsom,ce by passing Tsouree through the
image backbone network. Next, we obtain the source feature embedding €4yce
by passing fsou,.ce through the feature encoder. In addition, P,ouree and Ptm.get
are passed through a pose encoder to obtain the pose embedding €,,s.. More-
over, fsomce and €pose are passed through the feature decoder to obtain the
visual prompt ¢ for the diffusion process. Additionally, the noisy latent Z; for the
diffusion process can be obtained by adding noise € by timestep ¢ to the image
latent Zy, which is obtained by passing Lsource and ftarget through the image
encoder. As a result, the denoising network ¢y is optimized as follows:

L=E,

20,8, s0urce,eposc6,t illle —eo (2£a tAv ¢, Esource, épose) | ‘%] (3)

Next, for the inference phase, only Isource and Piarger are needed. Similar to the
training phase, Isoyrce is passed through the image backbone network to extract
the feature map fsource- fsource 15 passed through the feature encoder to obtain
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the feature embedding esource, and Pigrget is passed through the pose encoder to
obtain the pose embedding eposc. Moreover, fsource and ep0se are passed through
the feature decoder to obtain the visual prompt ¢ for the diffusion process. In
addition, the noisy latent z; for the diffusion process can be obtained from the
random Gaussian distribution A'(0,1) by timestep ¢. Finally, with the trained
denoising network €y, we obtain the predicted noise € as follows:

€= 69(2157 ta C, €source) epose)- (4)

Therefore, the predicted image latent zy can be obtained based on € and z;, and
a newly generated target image Iiqr4c+ can be obtained by passing it through
the image decoder.

3 Experiments

Interacting Hand Pose Transfer. We adopted two popular interacting hand
datasets: InterHand2.6M (IH2.6M) [25] and Re:InterHand (RelH) [26]. We demon-
strated the qualitative results as shown in Fig. [3| We can see that target images
are generated robustly and plausiblly on multiple background images generated
from diverse text prompts. In addition, hands in target images are well generated
for random target poses without distortion. This tendency is revealed both on
[H2.6M and RelH. It implies that IHPT properly handles semantic information
of the source image and complex geometric information of the target pose.

3D Hand Mesh Reconstruction. We adopted MSCOCO [27], which is a
representative dataset of in-the-wild scenes. Hence, it is appropriate to evaluate
the generalizability of images generated by IHPT. We trained an off-the-shelf 3D
hand mesh reconstruction network 23| with the new data generated by IHPT.
We demonstrated the qualitative results as shown in Fig. [4} the case of applying
IHPT showed better performance than the case without applying it. It implies
that in-the-wild hand images generated by IHPT positively contribute to the
downstream task (i.e., 3D hand mesh reconstruction).

4 Conclusion

We presented THPT, a diffusion-based model for interacting hand pose trans-
fer. IHPT treated the hand pose transfer as a series of diffusion processes that
progressively adjust the hand from the source image to match the target pose.
Initially, IHPT created the background for the source image using text prompts,
leveraging the high visual fidelity of a large-scale pre-trained Stable Diffusion.
It then generated a new target image with the desired target hand pose while
preserving the texture, complexity, and quality of the background-added source
hand image. In our experiments, IHPT demonstrated its ability to produce more
physically plausible transferred hand images. It showed strong and robust im-
age generation capabilities, effectively handling various text prompts and target
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Fig. 3: Qualitative results for the hand pose transfer on ITH2.6M (left) and RelH
(right).
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Fig. 4: Qualitative results for the 3D hand mesh reconstruction on MSCOCO . Red
and green boxes indicate wrong and correct 3D hand mesh, respectively.
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poses. Additionally, we trained an off-the-shelf 3D interacting hand mesh recon-
struction network with IHPT-generated images and proved the improvement of
performance in real-world scenarios. Therefore, utilizing IHPT to generate di-
verse hand images can help alleviate the shortage of in-the-wild 3D hand datasets
and bridge the domain gaps between indoor and outdoor environments, thereby
benefiting downstream applications.
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