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Abstract

In this report, we introduce the method proposed for
3D hand pose tracking in HANDS@ECCV2024 challenge
based on UmeTrack: multiview egocentric hand tracking
challenge, which aims to track hand poses in calibrated
stereo videos, utilizing a pre-calibrated hand shapes. We
provide a novel method for estimating accurate 3D hand
poses from stereo images. Given that stereo images can pro-
vide 3D spatial information, the main idea of our method is
to leverage this stereo information to guide the estimation
of MANO pose and transformation. Specifically, an effec-
tive cross-view feature fusion mechanism is utilized to accu-
rately estimate the relative 2D poses, which are then lifted
to 3D space and used to calculate the MANO transforma-
tion. Besides, an MANO pose optimization method is pro-
posed to alleviate the performance gap between MANO po-
sitions and joint coordinates. Finally, our method achieves
a FINGERTIP PCK AUC of 70.81% on the UmeTrack
dataset, securing the first place in the challenge.

1. Introduction
With the development of the field of computer vision and
the rise of XR/VR domains, 3D hand pose and shape es-
timation has become increasingly important in aiding the
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Figure 1. The features from the dual-view images are fused
through cross-view feature fusion. The MANO Decoder is used
to regress the hand pose parameters and hand side, while the Pose
Decoder is used to predict the 2D joint coordinates for both views.

understanding of human interaction with the surrounding
environment.

Previous methods[8, 11] primarily focus on hand pose
estimation from single image, treating multi-view images
as individual inputs. For 3D hand pose recovery, these ap-
proaches often neglect the inter-view relationships. In con-
trast, Remelli et al.[9] propose a method that uses camera
parameters to transform image features into a unified latent
representation space. Our proposed cross-view feature fu-
sion, however, allows the model to learn the inter-view rela-
tionships on its own. The final results demonstrate the effec-
tiveness of our approach. Some methods[2, 5, 12] estimate
the MANO[10] parameters and the parameters of a weak-
perspective camera, but this approach loses depth informa-
tion and cannot accurately localize the hand in the world
coordinate system.

In this work, we propose a novel method for 3D hand



pose tracking from stereo videos. First, based on the A2J-
Transformer[4] network, an effective cross-view feature fu-
sion mechanism is utilized to accurately provide the MANO
pose parameters and 2D hand poses from the dual views.
Then, by lifting 2D poses to 3D space, the transformation
matrix between MANO coordinates and world coordinates
can be calculated. Finally, due to the ground-truth perfor-
mance gap between MANO positions and joint coordinates
in UmeTrack dataset, we introduce a MANO pose optimiza-
tion method to improve performance. Besides, a tempo-
ral smoothing process is used to provide the temporal in-
formation. Ultimately, our approach prove to be effective,
with the first place in pose tracking challenge on UmeTrack
dataset.

2. Method

A2J-Transformer is a powerful 3D hand pose estimation
method that takes a single RGB images as input and out-
puts a root-related 3D pose. Based on A2J-Transformer,
we explore the potential of extending it to handle dual-view
images. Our approach takes synchronized dual-view im-
ages as input and performs inter-view feature fusion. The
enhanced model then outputs the MANO pose parameters
and the 2D joint positions for both views. Through trian-
gulation, we can reconstruct the 3D hand pose in the world
coordinate system and subsequently derive the wrist trans-
formation. This process will be explained in detail below.

Cross-view feature fusion. We use the Swin
Transformer[6, 7] as our visual feature extractor to capture
multi-scale image feature, which shares weights between
the two viewpoints. Then, we employ the Deformable
Transformer[13] to fuse the multi-scale image features from
two different viewpoints to improve the representation of
features, which enables information exchange between two
perspectives, effectively improving the accuracy of local-
ization hand joints between them.

Back to world system. Taking 2D point c1 = [u1, v1, 1]
in one view as an example, its corresponding point in the
other view is c2 = [u2, v2, 1],We can obtain the 3D point
C = [X,Y, Z, 1] by solving the following over-determined
system of equations:
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where P i represents the projection matrix of the camera

corresponding to point pi:

P i =

pi11 pi12 pi13 pi14
pi21 pi22 pi23 pi24
pi31 pi32 pi33 pi34

 (3)

Because of the noise of prediction, we use SVD to solve
Eq. 1 for the 3D point C with the least error.

After obtaining the 3D joints through triangulation, we
use the Kabsch algorithm to solve for the wrist transforma-
tion based on the triangulation 3D joints and the MANO
joints, where pose parameters are estimated by the model
and wrist transformation is set to zero.

Decoder. The overall design of the Decoder follows that
in A2J-Transformer. For the MANO Decoder, since no an-
chor prediction offsets are needed, we modify it to predict
the MANO pose parameter and hand type. For the Pose De-
coder, since 3D anchors are not needed, we set the anchor
points on a 2D plane.

Augmentation. In the training phase, we use image flip-
ping as a simple data augmentation method in which the
handedness of the hand is also changed. At the time of test-
ing, we use TTA, which considers the inputs of the original
image and the flipped image thereby obtaining results with
higher accuracy.

Postprocess. Since our network does not leverage tem-
poral information from videos when predicting 2D joint co-
ordinates, the triangulated 3D joint points exhibit tempo-
ral instability. To address this, we apply a simple yet ef-
fective temporal smoothing method. Specifically, a Gaus-
sian smoothing window is used to perform weighted averag-
ing of 3D keypoint coordinates across neighboring frames
within the window, producing the final smoothed result.
Then, the smoothed 3D joint coordinates serve as the opti-
mization target. The initial mano theta parameters and wrist
transformation output by the network are then used as ini-
tial values, and we optimize them to obtain the final mano
theta parameters and wrist transformation.

3. Experiment
For model training, we use only the UmeTrack[3] and
HOT3D[1] datasets, with supervision provided by the
MANO ground truth. The training is conducted on an
NVIDIA RTX 3090 GPU, with each minibatch containing
16 image pairs. We employ the Adam optimizer, starting
with an initial learning rate of 1e-4, which decays by a fac-
tor of 10 every 10 epochs. The model is trained for a total
of 20 epochs.

Since the model itself lacks the ability to handle image
sequences, we apply a temporal smoothing filter to ensure
the temporal consistency of our results. Additionally, we
observe that the 3D joint points reconstructed via triangula-
tion exhibit a lower Mean Per-Joint Position Error (MPJPE)



on the validation set compared to those derived from the
model’s predicted MANO parameters. This suggests that
the triangulated 3D joint points can be used to further refine
the model’s predicted MANO parameters, which are used
as the initial values in the optimization process.

In Table 1, we present our results on the test set using
TTA as well as temporal smoothing and post-optimization
(S&O). The table shows that our model has a solid base-
line performance, with an improvement of 0.26 when TTA
is applied. Additionally, incorporating temporal smoothing
and post-optimization further enhances the performance by
another 0.5.

ID Base TTA S&O FINGERTIP PCK AUC(↑)

1
√

70.05
2

√ √
70.31

3
√ √ √

70.81

Table 1. Quantitative results on Umetrack test set.

We conduct our experiments on HANDS@ECCV2024
challenge task4: multiview egocentric hand tracking chal-
lenge. The result is shown in Table 2. It can be observed
that our method achieves first place in the final three met-
rics.

User MPJPE(↓) PCK AUC(↑) FINGERTIP PCK AUC(↑)

ppjj 18.70 65.54 56.97
JVHANDS 14.21 72.23 67.63
HCB(ours) 12.87 75.66 70.81

Table 2. Performance comparison on HANDS@ECCV2024 chal-
lenge task4 Umetrack dataset.

4. Conclusion
In this report, we introduce a highly accurate hand pose es-
timation method designed for dual-view inputs. Our net-
work model can effectively predict dual-view 2D keypoints
and MANO pose parameters with high consistency without
utilizing camera parameters and video sequence informa-
tion, which lays a solid foundation for our subsequent tri-
angulation reconstruction process. We test our method on
the UmeTrack dataset, where it demonstrates promising re-
sults.
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