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Figure 1. Two stable grasp sequences from EPIC-Grasps for a bottle (left) and bowl (right). We show sample frames (top) and reconstruc-
tions (bottom). Right: for each reconstruction, we show the rotated view, along with the latent 1-DoF axis.

Abstract

We propose the task of Hand-Object Stable Grasp Re-
construction (HO-SGR), the reconstruction of frames dur-
ing which the hand is stably holding the object. We first de-
velop the stable grasp definition based on the intuition that
the in-contact area between the hand and object should re-
main stable. By analysing the 3D ARCTIC dataset, we iden-
tify stable grasp durations and showcase that objects in sta-
ble grasps move within a single degree of freedom (1-DoF).
We thereby propose a method to jointly optimise all frames
within a stable grasp, minimising object motions to a la-
tent 1-DoF. Finally, we extend the knowledge to in-the-wild
videos by labelling 2.4K clips of stable grasps. Our pro-
posed EPIC-Grasps dataset includes 390 object instances
of 9 categories, featuring stable grasps from videos of daily
interactions in 141 environments. Without 3D ground truth,
we use stable contact areas and 2D projection masks to as-
sess the HO-SGR task in the wild. We evaluate relevant
methods and our approach preserves significantly higher
stable contact area, on both EPIC-Grasps and stable grasp
sub-sequences from the ARCTIC dataset.

1. Introduction

In this work, we focus on the task of reconstruction
in-the-wild on temporal periods of stable grasps. This
work contains three components. First, we propose the
task of Hand-Object Stable Grasp Reconstruction (HO-
SGR) which jointly optimises the reconstructions across all
frames within one stable grasp. We showcase that objects
move within one degree of freedom (1-DoF), relative to the

hand pose, throughout the stable grasp. Second, we accord-
ingly propose a method that jointly reconstructs the hands
and objects by minimising the object’s motion, relative to
the hand, to 1-DoF around a latent rotation axis, through-
out the frames. We demonstrate our method outperforms
baselines and alternative assumptions of object movement
using 3D ground truth from the stable grasps within the
egocentric views of the ARCTIC dataset [5]. Third, We
label a sizeable dataset of 2.4K stable grasps clips from
egocentric videos. Our EPIC-Grasps dataset is the first for
hand-object reconstruction collected from unscripted activi-
ties, with individuals grasping 390 different objects by both
hands. Similar to previous works [1, 2, 7, 8, 13], we restrict
our evaluation to known category CAD models. Our dataset
comes with pseudo-ground truth in the form of 2D segmen-
tation masks available from [4], allowing to measure the 3D
reconstruction’s projection relative to this 2D ground truth.

2. Related Works

3D Hand Pose Estimation. Estimating 3D hand pose from
RGB images has been proposed for both free hands and
hands in-interactions, these methods [12, 14, 15, 17] are
used as building blocks of hand-object reconstruction meth-
ods [1, 10, 13, 21, 22].

3D Hand-Object-Reconstruction. Methods are grouped
into two categories. The first category, known-CAD meth-
ods [1, 10, 13, 18–20], assumes that object CAD models are
given and fits 3D shapes into 2D observations. The second
category, CAD-agnostic methods [3, 6, 9, 11, 21, 22], aims
to estimate the hand and object poses without using explicit
CAD models.
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Figure 2. Sample hand-object mesh sequence from ARCTIC. Con-
tact areas (in shiny yellow) are similar within the stable grasp (blue
background). In -0.16s the hand has no contact with the object.

Figure 3. We compare within/outside grasps, analysing object in-
contact area (left) and corresponding rotation errors of the static
and 1-DoF rotation approximations (right), normalising all stable
grasp duration for direct comparison (0 to 1 marked with blue
background). While both the Static and 1-DoF assumptions re-
sult in low approximation error within stable grasps, the error of
1-DoF assumption is marginal (right).

3. Stable Grasp Reconstruction: Problem and
Method

3.1. What is a stable grasp (SG)?

Definition. Formally, for any pair of frames i and j within
an interaction sequence, we use Si and Sj to denote the
in-contact (by a hand) area on the object surface, and
intersection-over-union IOU(Si, Sj) between in-contact ar-
eas. Following the intuition that the hand maintains a stable
contact area with the object during the stable grasp, the du-
ration of the stable grasp is defined as

[l∗, r∗] = argmax
l,r

(r − l) s.t. IOU(Si, Sj) > τ ∀l ≤ i < j ≤ r (1)

where τ specifies the minimum IOU threshold. The
argmax(r − l) implies the longest duration representing
the stable grasp, from its initiation to conclusion. Fig. 2 vi-
sualises an example of stable grasp.
Stable Grasp Study. We perform a study on the 3D-
ground-truth dataset ARCTIC [5] to analyse different quan-
titative measures within/outside the temporal extent of the
stable grasp. We use the threshold τ = 0.5 (Eq 1) and auto-
matically extract 1303 stable grasp sequences from a variety
of objects and subjects throughout dataset.

We present the main finding in Fig 3. As anticipated,
we show that the in-contact IOU, drops sharply outside the
stable grasp – plotted in Fig 3 (left). That is the contact
area remains stable only within the stable grasp’s temporal
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Figure 4. Our proposed reconstruction method. We show 3 frames
within a stable grasp. HaMeR [14] produces the hand meshes (ren-
dered in blue) from RGB, and we set the object-to-hand pose Tn

o2h

to the same To2h initially. Then, during each iteration of the opti-
misation, the object’s relative pose is optimised to 1-DoF and pro-
jected back to individual frames. These are compared with ground
truth segmentation (right), jointly optimise for all frames. We ig-
nore mask computation in hand occluded region (grey in the right
figure). The physical terms are omitted in this figure.

extent. When we assess the relative object motion to the
hand coordinate system within/outside the stable grasp, we
note that the in-hand object motion can be approximated
within single degree-of-freedom, plotted in Fig. 3 (right).
Formally, we define a rotation axis ϕ around which the ob-
ject can rotate. If an object is only allowed to rotate around
this axis, the motion is restricted from its free 6-DoF to a
single rotation angle around this axis – we thus refer to this
as a 1-DoF motion. The object pose w.r.t. the hand would
then be described as

Tn
o2h = rot (ωn, ϕ) ◦ To2h (2)

i.e., we first apply one global object-to-hand transform To2h

for all frames, followed by applying the per-frame rotation
rot (ωn, ϕ) – the rotation of angle ωn around the given ro-
tation axis ϕ. Here ◦ denotes composition of transforma-
tions. In Fig. 3 (right) we plot the 1-DoF approximation
error within/outside the temporal extent of stable grasp and
compare that to the assumption that objects remain static
(i.e. does not move relative to the hand). We show that
the angle error when using the static assumption to be non-
negligible (avg 10◦). When we use the 1-DoF assumption,
the error off the rotation axis ϕ is generally low (avg 3◦).

3.2. Reconstructing Object Poses in a Stable Grasp

Given a start-end segment of a stable grasp, we aim to pro-
duce consistent hand object reconstructions across all N
frames within the stable grasp. More specifically, we aim to
produce, for every frame n, a pair of 3D meshes of the hand
and the object w.r.t. the camera.

Following prior works [1, 10, 13], we use MANO [16]
to represent the hand mesh. We use HaMeR [14], to obtain
the finger articulations θn from individual frames. We thus
have per-frame hand vertices V n

h = MANO(θn). Addition-
ally, the hand-to-camera (h2c) pose Tn

h2c ∈ SE(3) which is



defined as the hand wrist pose, is produced by HaMeR by
default. The Tn

h2c will be used to transform the hand and
the object from the hand coordinate system to the camera
coordinate system for each frame.

For the object mesh, we assume the category-level ob-
ject CAD model is known, and denote the object vertices as
Vo ∈ R|Vo|×3. We will reconstruct the object-to-hand (o2h)
poses Tn

o2h ∈ SE(3) and the scalar scale s ∈ R, which
transform object vertices to V n

o:h in the hand coordinate sys-
tem for each frame. To render the object back to the im-
ages, we then use the hand-to-camera (h2c) pose Tn

h2c to
transform V n

o:h to V n
o:c in the camera coordinate system:

V n
o:c = Tn

h2c(T
n
o2h(s ∗ Vo)) (3)

We reconstruct the object-to-hand poses Tn
o2h with the

render-and-compare approach, overviewed in Fig. 4. We
propose to leverage our finding of 1-DoF motion from the
stable grasp study (Sec. 3.1), to optimise the consistent ob-
ject pose relative to the hand. As shown in Eq. (2), the 1-
DoF object relative pose Tn

o2h at frame n is given by per-
frame rotation ωn, the rotation axis ϕ and the global base
object-to-hand pose To2h that takes the object into the hand.

Our main objective function is given by:

E(ϕ, {ωn}, To2h︸ ︷︷ ︸
{Tn

o2h}

, s; {θn}, {Tn
h2c}) =

N∑
n=1

λ1E
n
mask + λ2E

n
push + λ3E

n
pull

(4)
where {θn} and {Tn

h2c} are sets of outputs from
HaMeR and are kept fixed, and s is the scalar object scale
to be optimised.

We initialise the latent axis ϕ to the object’s z-axis from
the CAD model; {ωn} are initialised to zero. We note the
initialisations for To2h in implementation details. We then
jointly optimise all parameters across frames, in particular
the rotation axis ϕ and the per-frame rotation angles {ωn}.

We use three terms in the optimisation:
En

mask, E
n
push, E

n
pull. The main term Emask focuses

on estimating a reconstruction that best matches the 2D
projections of the object masks throughout the sequence.
We measure the error via sum of pixel differences:

En
mask = |Cn

o ⊗ (Mn
o −Π(V n

o:c))|22 (5)

where Mn
o is the object mask which we use for supervision

and Π(·) is the differentiable projection function. Cn
o is the

occlusion-aware mask as in [10, 23] which only computes
the error within regions of the object that are not occluded
by the hand, set to 1 for the object and the background, and 0
for the hand. This masking is critical to avoid penalising the
missing parts of the object mask due to in-hand occlusion.

We also employ two additional terms, used in previ-
ous works [1, 10, 13, 19]. We use the physical heuristics
Epush, which pushes the object out of the penetrating re-
gion against the hand and a balancing loss Epull which pulls
the object to touch these contact regions.

Figure 5. Two stable grasp reconstructions by 1-DoF method on
ARCTIC-Grasps.

4. Results
We use 4 baselines to compare to: (i) HOMan [10], a com-
mon CAD-based baseline that progressively optimises the
object pose relative to the hand; (ii) Single Frame, inde-
pendent optimisation for each frame; (iii) Static, objects are
not allowed any motion; (iv) Dynamic, objects are allowed
to move freely within 6-DoF.

We propose quantitative metrics to measure the correct-
ness of the predicted object poses within the stable grasp.
Average Distance (ADD %) measures the distance of cor-
responding vertices between GT and predicted object ver-
tices in the hand coordinate system. ADD is 1 for a se-
quence if the average distance is less than 10% of the ob-
ject’s diameter, and 0 otherwise.
Average Stable Contact Area at ADD Success (SCA-
ADD %). When a pose is considered correct for a se-
quence, i.e. ADD is 1, we measure the stable contact area
across the sequence, defined as the average IOU of in con-
tact area between each pair of frames (Sec. 3.1). SCA-ADD
is set to 0 when ADD is set to 0 (average distance below
threshold). We average SCA-ADD over all examples.
Intersection-over-Union (IOU %). We use IOU as a proxy
of pose accuracy when 3D GT is not available. We measure
the IOU between the ground truth mask and the rendered
mask for the object in camera view. We report average IOU
across all frames.

Tab. 1 compares results on ARCTIC-Grasps, using all
the metrics. We show qualitative examples in Fig. 5.

Tab. 2 compares results on EPIC-Grasps dataset using
proxy metrics IOU and SCA-IOU at two thresholds (0.8
and 0.6). We compare 1-DoF to the best variation from
ARCTIC-Grasps: Dynamic. 1-DoF achieves the best SCA-
IOU metric for both thresholds for every object category
and overall.
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