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Abstract. We present a novel unified framework that concurrently tack-
les recognition and future prediction for human hand pose and action
modeling. Previous works generally provide isolated solutions for either
recognition or prediction, which not only increases the complexity of
integration in practical applications, but more importantly, cannot ex-
ploit the synergy of both sides and suffer suboptimal performances in
their respective domains. To address this problem, we propose a gen-
erative Transformer VAE architecture to model hand pose and action,
where the encoder and decoder capture recognition and prediction re-
spectively, and their connection through the VAE bottleneck mandates
the learning of consistent hand motion from the past to the future and
vice versa. Furthermore, to faithfully model the semantic dependency and
different temporal granularity of hand pose and action, we decompose
the framework into two cascaded VAE blocks: the first and latter blocks
respectively model the short-span poses and long-span action, and are
connected by a mid-level feature representing a sub-second series of hand
poses. This decomposition into block cascades facilitates capturing both
short-term and long-term temporal regularity in pose and action model-
ing, and enables training two blocks separately to fully utilize datasets
with annotations of different temporal granularities. We train and eval-
uate our framework across multiple datasets; results show that our joint
modeling of recognition and prediction improves over isolated solutions,
and that our semantic and temporal hierarchy facilitates long-term pose
and action modeling.

Keywords: Hand pose action modeling · recognition and future predic-
tion · temporal regularity · semantic and temporal hierarchy · hand pose
estimation · hand action recognition · hand motion prediction

1 Introduction

Understanding dynamic hand poses and actions is fundamental in fields such as
human-robot interaction and VR/AR applications. In recent years, huge progress
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Fig. 1: Jointly modeling recognition and prediction, while following the semantic de-
pendency and temporal granularity for hand pose-action. For recognition, (1)→(2)
moves up from short to long spans for input pose refinement and action recognition re-
spectively. For motion prediction, two paths are available: (1)→(4) exploits short-term
motion regularity, and (1)→(2)→(3)→(4) enables long-term action-guided prediction.

has been made in recognizing 3D hand poses and actions (e.g . take out a chip)
from inputs such as RGB videos [12,20,43,52,54,59]. Meanwhile, another line of
research [2,26,27] focuses on predicting future hand motion represented as a se-
quence of frame-wise poses, where recent research [29] further employs generative
models to achieve diverse motion prediction conditioned on a given action.

However, existing literature provides isolated solutions working on either the
recognition [12,20,43,52,54,59] or prediction [2,26,27,29] side, which brings de-
ployment complexity when integrating both sides in practical applications. Fur-
thermore, we note that recognition and prediction tasks are naturally synergized
by the temporal regularities shared through observed and future timestamps: As
exemplified in Fig. 1, given the observation of hand poses reaching into the can,
which indicates the action of taking out a chip, one can predict that future hand
motion will describe grabbing and pulling out a chip, thus completing the ac-
tion. However, isolated solutions cannot fully exploit this temporal regularity,
resulting in a tendency to overfit to specific data distributions and suffer from
suboptimal performances in their respective domains (Sec. 4.3).

We present a framework with a generative Transformer VAE architecture to
jointly capture both recognition and future prediction for hand pose and action
modeling, therefore addressing various tasks including input 3D hand pose re-
finement, action recognition, and future 3D hand motion prediction. Our trans-
former encoder and decoder respectively produce outputs for recognition and
prediction, while the VAE latent code connecting the two forces the extraction
of regular and consistent hand motion and action, by predicting the future from
the past and vice versa. In this way, we synergize recognition and prediction
tasks and enhance the performance compared to isolated solutions (Sec. 4.3).

Moreover, when it comes to pose-action modeling, extensive literature has
shown the benefits of capturing the semantic dependency between the instan-
taneous pose and action over seconds. For example, [15, 29, 37, 38, 48] gener-
ate motion by conditioning on action to enhance realism. On the recognition



G-HTT 3

side, [9, 47, 52, 54] aggregates the frame-wise hand poses estimated throughout
the video to recognize the performed action. Besides modeling the semantic
dependency, Wen et al . [52] further emphasize capturing the different temporal
granularity of hand pose and action. Their framework, namely Hierarchical Tem-
poral Transformer, has two cascaded encoders that capture short and long time
spans respectively for effective hand pose estimation and action recognition.

In addition to our jointly modeling of both recognition and prediction, we
are inspired by [52] to introduce block cascades, thus faithfully respecting the
semantic dependency and temporal granularity of hand pose-action. To this end,
we decompose our framework into two cascaded blocks that have the same gen-
erative transformer VAE structure but focus on different semantic and tempo-
ral granularities, thus naming our framework Generative Hierarchical Temporal
Transformer (G-HTT): The lower pose block (P block) models hand poses over
short time spans, and the upper action block (A block) models action over long
time spans. A middle-level representation is further introduced to connect the
two blocks: it is simultaneously the pose block VAE latent code and the action
block encoder input/decoder output, and semantically encodes clip-wise motion
over a subsecond span (Fig. 1).

This decomposition into block cascades offers two key advantages: First, it
decouples the complex motion generation into hierarchical subtasks to respec-
tively capture short-term and long-term temporal regularity, which improves
over flattened models (Sec. 4.4). Second, it brings training flexibility, as we can
train the blocks separately, which not only reduces training computational cost
but also allows for using datasets of different annotation granularities (Secs. 3.3
and 4.5).

We train and evaluate the framework across different datasets of two-hand
interactions, including H2O [23] for daily activities, Assembly101 [42] and As-
semblyHands [36] for (dis-)assembling take-part toys. At test time, given a 3D
hand pose sequence (e.g . per-frame estimations from the observed RGB video),
we first refine it by leveraging the short-term hand motion regularity, (Fig. 1,
(1)). Next, we aggregate the clip-wise motions for action recognition (Fig. 1,
(1)→(2)). Finally, we decode the observed motions and action into a sequence of
future middle-level features for motion prediction (Fig. 1, (1)→(2)→(3)→(4)).
Evaluation results across datasets show that our framework can solve recognition
problems from various camera views, and generate plausible future hand poses
over time. The contribution of this paper can be summarized as follows:

– A generative Transformer VAE architecture to concurrently capture recogni-
tion and future prediction for hand pose and action modeling, which exploits
the temporal regularity synergized between the past and the future, thus im-
proving over isolated solutions.

– A hierarchical architecture composed of two cascaded generative blocks,
which models semantic dependency and temporal granularity of pose-action.
This block cascade facilitates capturing both short-term and long-term tem-
poral regularities, and further brings training flexibility.
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– A comprehensive evaluation of the system on tasks such as 3D hand pose
refinement, action recognition, and 3D hand motion prediction, validating
the performance and design of our framework.

2 Related Works

Action Recognition and 3D Hand Pose Estimation Massive literature
addresses perceiving hand pose and action from visual observation. For example,
a series of works aims to recover the 3D hand skeleton or mesh from the visual
input, where the spatial correlation within a single-frame is well exploited [20,
24, 34, 46, 55, 59], and the motion coherence along the temporal dimension is
further leveraged to improve robustness under occlusion and truncation [3, 10,
16,17,35,51]. Meanwhile, [5,11–13,43] focus on the higher semantic level, where
they extract the spatial-temporal feature from the input frames to recognize the
semantic hand or body action.

Moreover, many works notice and exploit the benefits of modeling the se-
mantic dependency between hand pose and action, since intuitively action is
defined by the pattern of hand motion (i.e. verb) and object in manipulation
(i.e. noun). For example, [9, 25, 32, 45, 47, 52, 54] leverage the hand pose fea-
tures for action recognition, while Yang et al . [54] further refer to the action
feature for pose refinement. Wen et al . [52] further stress capturing the respec-
tive temporal granularity of pose and action when exploiting temporal cues, and
propose a framework with two cascaded blocks to respectively work on short-
and long-term spans and output per-frame 3D hand pose and video action.

The hierarchical structure of our framework is inspired by [52], but we have
extended it to model prediction tasks, which not only covers more tasks but also
enhances recognition performance (Sec. 4.3).
3D Human Hand and Body Motion Prediction Previous works predict
the 2D or 3D trajectory of hand roots [2, 26, 27, 30] or skeleton [8] from the
observed hand motion. On the other hand, [1, 4, 21, 29, 31, 33, 49, 56, 57] capture
the distribution of future body motion with powerful generative deep neural
networks. Motion prediction can also benefit from semantic dependency model-
ing, as achieved by taking the past motion together with a specified action as
condition, based on cVAEs [4,33], GPT-like models [21,29,57] and diffusion mod-
els [49]. For example, PoseGPT [29] first quantizes short motion clips into latent
codes by training a VQ-VAE, and then constructs a GPT-like auto-regressive
model for motion generation, which learns on sequences of action and latent
motion tokens.

Our work builds a hierarchical structure for motion prediction, where con-
sistencies in both short-term motion and long-term action are explicitly ensured
through the cascade of generative Transformer VAEs (Sec. 4.4). In addition, we
learn prediction and recognition simultaneously, which improves both tasks by
exploiting the shared temporal regularity (Sec. 4.3).
Bridging Recognition and Prediction There are previous attempts to bridge
recognition and prediction, therefore benefiting recognition or prediction at the
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Fig. 2: Overview of our framework. The cascaded P and A (shaded in blue) of G-
HTT jointly model recognition and prediction, and faithfully respect the semantic
dependency and temporal granularity among pose, mid-level and action (Sec. 3.1).

pose or action level. For example, [40,44] learn next-frame pose prediction with
cVAEs to model a latent space depicting pose transitions along the temporal
dimension. Their learned latent space then serves as a strong regulation in test-
time optimization for body pose estimation. [29, 37, 38, 48, 49] learn text-guided
motion generation models, with the text guidance in the form of prescribed ac-
tions. The generated sequences can then be used as training data for recognition
tasks. On the other hand, [7, 14,50, 53,58] leverage per-frame prediction for un-
derstanding high-level action, benefiting tasks such as action anticipation [14,50]
or early action detection [7, 53,58].

In comparison, our hierarchical modeling enables capturing both recogni-
tion and prediction by modeling the semantic hierarchy between short-term
pose and long-term action, which significantly boosts computational efficiency,
pose/action estimation accuracy, and long-term generation fidelity. This is not
considered by existing works.

3 Methods

The core framework, namely Generative Hierarchical Temporal Transformer (G-
HTT, Fig. 2), takes as input the object in manipulation and the observed
pose sequence of T frames for two interacting hands, where the hand motion
and object feature respectively depict the verb and noun of the action being
performed (e.g . take out a chip). G-HTT then jointly models both recognition
and prediction, while following the semantic-temporal hierarchy of pose-action
that captures their dependency and different temporal granularities (Sec. 3.1). In
the test stage, we apply G-HTT to recognition tasks of input pose refinement and
action recognition, and to the generation task of diverse hand motion prediction
(Sec. 3.2). Important implementation details are given in Sec. 3.3, and a table
of notations is provided in the supplementary for reference.
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3.1 Joint Modeling of Recognition and Prediction with
Semantic-Temporal Hierarchy

G-HTT consists of two cascaded blocks, namely the short-term pose block P and
the long-term action block A, to jointly model recognition and prediction while
following the hierarchy of temporal and semantic granularity for pose-action.
Both P and A have the same VAE structure, with their encoders and decoders
respectively outputting for recognition and future motion prediction, but P and
A model different semantic levels and time spans (Fig. 2).

To bridge the pose and action blocks in the semantic-temporal hierarchy,
we explicitly introduce a mid-level feature m, which represents the hand poses
within a sub-second time span. P and A then respectively model the mappings
between pose vs. mid-level, and mid-level vs. action. As the two blocks are
cascaded, the different semantic levels can refer to each other for globally consis-
tent recognition and prediction (Sec. 3.2). Moreover, our design enables a flexible
training scenario, where P and A can be decoupled and trained separately based
on their respective supervision signals and training data (Sec. 3.3).

P-Block takes a subsecond time span of t (t < T ) consecutive frames to model
the relationship between per-frame hand pose and mid-level feature mP , without
explicitly leveraging the action information. The mid-level mP is learned to be
the latent bottleneck of P, which encodes the input t consecutive frames of
hand poses, and is decoded to hand motion of the future t frames. Meanwhile,
similar to HTT [52], the input hand poses can be refined via the encoder EP by
leveraging the short-term temporal regularity.

In detail, EP takes as input a sequence of t+ 2 tokens (µ̃P , Σ̃P , H̃1, ..., H̃t).
H̃i represents the per-frame hand pose, and µ̃P , Σ̃P ∈ Rd are trainable tokens for
parameterizing the distribution of mP by aggregating over H̃1:t, similar to [37,
38]. Denoting the output sequence of (µP , ΣP ,H1, ...,Ht), we obtain Hi as the
refined frame-wise hand poses, and sample mP with re-paramterization [22] from
the normal distribution N(µP , ΣP ).

DP predicts the hand pose for the following t frames in a parallel manner.
The mid-level mP , with H1:t optionally concatenated as skip-connections, are
referred by DP through cross-attention. As a parallel transformer decoder, the
query input of DP are the sinusoidal position encoding of t tokens, and the
output t tokens are mapped into the future hand motion Ht+1:2t.

Denoting the corresponding GT motion as H1:2t, P is trained by a loss func-
tion consisting of three parts:

– The hand component loss to compare the refined and predicted motion with
GT:

Lcomp =
1

2t

2t∑
i=1

||Hi −Hi||1 (1)
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– The root frame trajectory loss for the predicted part:

Ltrj =
1

t

2t∑
i=t+1

(
||sLi − sLi ||1 + ||sRi − sRi ||1

)
(2)

with sLi , s
R
i denote the GT counterpart.

– The KL-loss LP
KL for the regularity of mP , as the KL-divergence between

N(µP , ΣP ) and the standard normal distribution.

The overall loss for P sums them up: LP = λ1Lcomp + λ2Ltrj + λ3L
P
KL.

A-Block models the relationship between the mid-level feature and action: it
exploits the long-term time span to aggregate the sequence of mid-level features
mP from the whole observation, and predicts a sequence of mid-level features
mA for future timestamps, which are further expanded by DP into concrete
motion. In addition to variational auto-encoding, A has its latent bottleneck
feature also aligned with text embeddings of the action taxonomy, to enable
action recognition of the observation and action-controlled prediction.

The encoder EA derives action from hand motion and object feature across
the observation. Its input sequence concatenates the trainable tokens µ̃A, Σ̃A ∈
Rd with the clip-wise mid-level mP

1:n and object feature ω1:n (n = ⌈T/t⌉). Specif-
ically, mP

i is the µP from EP ; ωi is comparable to the CLIP [6,39,41] feature of
object name, which is aggregated by an extra individual EPO from the per-frame
object features (Sec. 3.3). We further add a sinusoidal phase encoding ϕi to mP

i

and ωi, which denotes the number of clips since the beginning of the performed
action. Given µA, ΣA output from EA, we follow N(µA, ΣA) to re-parameterize
and obtain the bottleneck latent feature α.

We then inject α into the decoder DA to enable action-controlled generation.
For the cross attention of DA, we utilize α and optionally include the clip-wise
feature obtained from EA for enhanced continuity. The parallel decoder DA takes
the phase embeddings ϕn+1:n+n̄ as input, and outputs mA

n+1:n+n̄ depicting the
mid-level features of the future n̄ consecutive clips. One can further expand the
predicted mA into concrete poses through DP , completing the cycle of long-term
observation for long-term prediction, with consistency in both global action and
local poses (Sec. 3.2, P.b).

To train A, besides the KL-loss LA
KL, we constrain the bottleneck latent α

by matching it with the embedding of action taxonomy A = {a = FC1(α) ∈ Rd},
where α are CLIP text embeddings [6, 39, 41] for action labels in the taxonomy
of size NA. Therefore, the action recognition loss is:

Laction =

NA∑
i=1

wi (||α− ai||1 − logPr(ai|α)) (3)

which penalizes the differences of action features by both l1-norm and contrastive
similarity. Here, wi is 1 for the GT action and 0 otherwise, and
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Pr(ai|α) =
exp(α̂ · âi/τ)∑NA

j=1 exp(α̂ · âj/τ)
(4)

measures the probabilistic similarity of predicted and GT labels among can-
didates from taxonomy. ẑ = z/||z|| denotes the normalized unit vector, and
τ = 0.07 is the temperature of contrastive similarity. When testing, we perform
action recognition by searching the closest labels to µA.

For future motion supervision, instead of expanding down to concrete hand
poses, we directly compare mid-level features for efficiency. Specifically, mA

n+1:n+n̄

are compared with pre-computed mP
n+1:n+n̄, with mP

j = µP
j encoding the GT

hand motion of the future j-th clip via EP . The motion prediction loss is

Lmid =
n+n̄∑

j=n+1

||mA
j −mP

j ||1 (5)

To summarize, the overall loss of A is LA = λ4Lmid + λ5Laction + λ6L
A
KL.

3.2 Network Flow for Tasks

The framework addresses tasks of recognition (i.e. pose refinement and action
recognition) and prediction by going through different paths within the network.
Recognition Recognition tasks are performed through the encoders. Specifi-
cally, EP refines the input per-frame estimated hand pose by referring to the
motion regularity over a subsecond clip of t frames, followed by EA to output
µA for action recognition over the entire T input frames.
Prediction Prediction of future hand motion is fulfilled by the decoders. Given
observed hand motion H̃1:T , G-HTT provides two ways for the prediction of
diverse and realistic hand motions (Fig. 1):

(P.a) (1)→(4). It generates locally consistent motions using only P. It takes
the last t observed frames H̃T−t+1:T as input, and predicts motion of the
following clip HT+1:T+t by sampling from N(µP , ΣP ) for DP decoding.
The output motion can then be autoregressively fed back to P as input
for longer prediction.

(P.b) (1)→(2)→(3)→(4). For more realistic long-term prediction with action
guidance, we move up the hierarchy to leverage A and predict mA

n+1:n+n̄,
with diversity coming from sampling from N(µA, ΣA). mA

n+1:n+n̄ are fur-
ther decoded by DP into concrete poses HT+t+1:T+(n̄+1)t.

We compare the two paths for motion prediction empirically in Sec. 4.4, and use
P.b by default for long-term prediction in other experiments.

3.3 Implementation Details

P, A are trained across different datasets separately. To deploy G-HTT for
practical RGB video processing, we leverage an external image-based hand object
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estimator F and a sequence-based object aggregator EPO, to provide the input
for G-HTT. The external modules can be trained independently or obtained
from off-the-shelf models.
G-HTT Details We set t = 16 and allow T to have a maximum value of 256 at
30 fps. Both P and A have 9 layers for the encoders and decoders, with a token
dimension of d = 512. We train a single network across datasets with different
pose and action annotation qualities for enhanced capability (Sec. 4.5).

We first train P on all available pose sequences, regardless of the availability
and transition of action labels, thanks to the decoupling of action and P. We
augment the input motion H̃ with random noise, making P capable of coping
with noisy per-frame estimation in the recognition stage. Then, we fix the pre-
trained P and train A, whose training data assumes the same action shared
between the observation and prediction. We derive the mid-level mP from the
pose annotations with EP , randomly divide the training sequence into observed
and predicted parts, and correspondingly assign mP as the input of EA or su-
pervision signal of DA. For the input of EA, we augment the mid-level features
with random Gaussian noise, and refer to the noun of GT action for the clip-wise
object feature ω.

We use AdamW [28] optimizer with a learning rate of 10−4 and weight decay
of 0.01 for both P and A, where our batch size is 256. We respectively train P
and A with 80 and 200 epochs, with loss weights as λ1, λ2 = 1, λ3 = 10−5, and
λ4 = 1, λ5 = 0.1, λ6 = 10−5. Other design and training details are illustrated in
the supplementary.
Image-based Estimator F takes an image as input, and outputs for the image
its hand pose, along with the object feature õ that is comparable with CLIP [6,
39,41] feature of object in manipulation. For experiments, we implement F as a
ResNet-18 [18] backbone followed by heads regressing the hand pose and object
feature. We provide more details in the supplementary.
Clip-wise Object Detector EPO extracts ω as the clip-wise object represen-
tation aggregated from per-frame object features õ of t consecutive frames. The
clip-wise ω is then fed into EA to provide a consistent object information for ac-
tion recognition (Sec. 3.1). We implement EPO by 2 transformer encoder layers,
which is trained based on F; details are explained in the supplementary.

4 Experiments

4.1 Datasets

To demonstrate the versatility of our framework, we use three large-scale hand
action datasets [23,36,42], covering highly diverse motions and actions, for train-
ing and testing. Across all datasets, we consider N = 20 joints annotated by [23],
leaving the carpometacarpal joint of the thumb out as its annotation is unavail-
able in [42]. As the short-span hand motion is independent of action, we train
P on untrimmed sequences that could contain multiple action annotations, and
train A on trimmed sequences with clean and complete action annotations. For
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the evaluation of both pose and action, we use trimmed sequences with clean
action labels.
H2O [23] records four subjects performing 36 indoor daily activities, in four
fixed (cam0-3 ) and one egocentric camera (cam4 ) viewpoints. We conduct eval-
uation on validation and test splits, the latter having subjects unseen in training.
Assembly101 [42] and AssemblyHands [36] Assembly101 [42] contains
procedures of people assembling and disassembling toy vehicles, with pose la-
bels computed automatically by UmeTrack [17]. AssemblyHands [36] further
improves the pose annotation quality for a subset of Assembly101 sequences.
We follow the splits of Assembly101 for training and testing, using actions of
its fine-grained taxonomy with 1380 different labels. We conduct evaluations on
sequences that have more reliable pose annotations from AssemblyHands, and
consider six fixed camera views that have no severe hand occlusions (details
in supplementary). We focus evaluation on the validation split, as it contains
accessible object labels for action recognition and motion prediction (Secs. 4.3
and 4.4), which the test split lacks.

4.2 Setup and Metrics

Recognition We take a whole video sequence depicting the process of an action
as input. For evaluation of pose estimation, we use metrics of MPJPE-RA
(Mean Per Joint Position Error-Root Aligned) and MPJPE-PA (Procrustes
Analysis of MPJPE). To deal with the ambiguity of different hand scales, we
align estimation and GT by equalizing the average length of palm bones. For
action recognition, we report the top-1 classification accuracy (Action Acc.).
Prediction We divide each action video into segments of 16 frames. Given each
segment, we use its pose and object annotation as the input observation, and pre-
dict the rest sequence until reaching the end of action or the maximum duration
of 96 frames. We generate 20 random samples from N(µ, 5Σ) as a trade-off be-
tween accuracy and diversity (Secs. 4.3 and 4.4). For the evaluation of generative
results, we mainly use the widely adopted FID (Frechet Inception Distance) [19]
to assess quality, which computes the distributional distance of features between
generated and GT motion sequences. The features are obtained from the last
layer of a pre-trained transformer-based action recognition network, and the GT
sequences are from the evaluation split unseen in training. A smaller FID means
a more faithful generation. In addition, to explicitly measure generation diver-
sity, we report APD (Average Pairwise Diversity) [56] in mm that computes the
average distance between all pairs of 20 generated samples. A larger APD means
a more diverse generation. More details about the setup and metrics are given
in the supplementary.

4.3 Joint Modeling of Recognition and Prediction

We first demonstrate the enhanced capability because of our joint modeling
of recognition and prediction, by respectively comparing with state-of-the-art



G-HTT 11

Table 1: Pose estimation and action recognition results. For hand pose estimation
we report MPJPE-RA/-PA in mm for (left,right) hand respectively, where ∗ denotes
training views leveraged for HTT [52]. Please refer to the supplementary for complete
results on all camera views, and comparison on the H2O-Val.

H2O-Test Resnet-18(F) HTT [52] Ours

cam0∗
MPJPE-RA↓ 27.0,25.6 26.9,24.1 26.5,25.3
MPJPE-PA↓ 7.8,10.6 7.3,10.4 7.4,10.3
Action Acc.↑ - 85.12 59.92

cam2
MPJPE-RA↓ 19.2,24.8 20.1,25.4 18.9,24.5
MPJPE-PA↓ 6.9,10.6 7.4,11.0 6.6,10.3
Action Acc.↑ - 73.55 68.18

cam4
MPJPE-RA↓ 18.4,21.4 101.2,137.8 17.9,21.0
MPJPE-PA↓ 6.8,9,4 28.5,33.8 6.4,9.1
Action Acc.↑ - 2.89 57.85

AssemblyHands-Val Resnet-18(F) HTT [52] Ours

v1
MPJPE-RA↓ 35.4,22.7 55.6,39.0 35.1,22.4
MPJPE-PA↓ 12.0,10.8 17.2,14.2 11.7,10.4
Action Acc.↑ - 16.55 36.01

v3∗
MPJPE-RA↓ 27.5,27.2 26.7,27.3 27.3,26.9
MPJPE-PA↓ 12.2,12.0 12.3,12.1 11.9,11.7
Action Acc.↑ - 39.42 34.79

v8
MPJPE-RA↓ 26.1,30.4 91.3,88.5 25.9,30.0
MPJPE-PA↓ 11.8,12.3 24.2,27.3 11.5,11.8
Action Acc.↑ - 9.98 36.74

Fig. 3: Qualitative comparison of pose estimation for HTT [52] and our G-HTT, on
camera view v1 of Assembly datasets [36,42]. More cases on H2O and AssemblyHands
datasets are provided in the supplementary.

solutions for either recognition (i.e. HTT [52]) or prediction (i.e. PoseGPT [29]).
More implementation details for the baselines are given in the supplementary.
Recognition The most relevant baseline is HTT [52], which also models the
semantic-temporal hierarchy but focuses only on recognition. Based on the pre-
trained image-based estimator F used by ours for fair comparison (Sec. 3.3),
we train HTT on two camera views of H2O (cam0,1 ) and one view (v3 ) of
AssemblyHands, where we concatenate image feature with the estimated hand
pose and object from F as the per-frame input of HTT. We also take the initial
pose estimation of F as a reference for comparison. Moreover, to obtain the object
input for both methods, on H2O we leverage the network estimation, while on
AssemblyHands we use the GT labels, where it is very challenging to recognize
objects reliably due to cluttered scenes and frequent occlusions (Fig. 3).

As shown in Tab. 1 and Fig. 3, G-HTT demonstrates robust accuracy on
various camera views, for refining the local pose and action recognition, even
though G-HTT is never trained on F. In comparison, although HTT fits better
on views that are trained on or close to trained ones (e.g., cam2 of H2O), its
performance significantly degrades on the other views, even worse than its input
obtained from F. The results show that our simultaneous modeling of both
recognition and prediction enhances generalization by learning regular motion
priors across tasks. In contrast, a recognition-only network is more likely to
overfit particular data distributions.
Prediction We take PoseGPT [29], a state-of-the-art model for motion predic-
tion with prescribed action, as a baseline for performance evaluation. While the
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Fig. 4: Qualitative comparison of predicted motions for PoseGPT [29], the ablated
settings of w/o mid-level, w/ only P via path P.a, and the full G-HTT (w/ P,A, via
path P.b) on H2O. More qualitative cases are provided in the supplementary.

Table 2: Comparison with PoseGPT [29] for motion prediction, on action sequences
that are longer than 1 sec. APD in mm for (left, right) hand respectively.

GT action input H2O-val H2O-Test AssemblyHands-Val
FID↓ APD↑ FID↓ APD↑ FID↓ APD↑

PoseGPT [29] ✓ 5.19 32.3,43.1 11.70 24.1,48.6 16.07 25.3,33.0
Ours (P.b, w/ P,A) × 5.32 22.1,25.7 8.19 20.1,33.9 5.04 28.1,32.8

Table 3: Comparison of long-term prediction decoded from mP (P.a) and mA (P.b),
on action sequences that are longer than 2 sec.

H2O-val H2O-Test AssemblyHands-Val
FID↓ APD↑ FID↓ APD↑ FID↓ APD↑

Ours (P.a, w/ P) 8.18 40.7,48.3 12.78 36.7,52.5 8.20 40.8,51.1
Ours (P.b, w/ P,A) 6.59 29.7,33.3 10.88 26.2,48.3 6.84 34.8,42.3

original PoseGPT trains on body motion, we retrain PoseGPT with its official
code by combining the three hand pose-action datasets of Assembly101, Assem-
blyHands and H2O as we do. We evaluate on action sequences longer than 1 sec
to better show the differences in prediction.

As reported in Tab. 2, G-HTT shows significantly better FID on the H2O-
test split of unseen subjects and on AssemblyHands; meanwhile, the two methods
have comparable accuracy on the H2O-val split of trained subjects. These results
show our better generation quality across actions and datasets. Visually from
Fig. 4, while PoseGPT suffers from lacking regularity for predicted motion, our
prediction shows globally consistent action.

We attribute the differences to two factors: our joint learning of both recogni-
tion and prediction, and our hierarchical model for pose and action. In contrast
to action-conditioned generation alone, by modeling both recognition and pre-
diction our framework learns strong motion-action regularities across datasets
covering highly diverse hand actions, as shown by the consistent high quality
across three datasets (Tab. 2). Moreover, different from the vector quantization
of PoseGPT for clip-wise motion, our mid-level representation originates from
P, where P models not only the observed motion but also prediction, enabling
global action-guided motion generation that preserves local motion continuity
(see also Sec. 4.4).
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Table 4: Comparison of motion prediction between ours and the ablated setup without
modeling the mid-level, on action sequences that are longer than 2 sec.

Sampling with H2O-val H2O-Test AssemblyHands-Val
FID↓ APD↑ FID↓ APD↑ FID↓ APD↑

w/o Mid-Level µ, 5σ 6.69 18.0,23.7 13.84 17.9,29.4 5.67 16.9,21.9
w/o Mid-Level µ, 10σ 14.05 25.5,33.4 22.64 24.1,35.2 6.31 23.3,30.2

Ours (P.b, w/ P,A) µ, 5σ 9.30 27.8,31.4 13.10 24.6,43.3 5.21 33.6,40.0

4.4 Modeling Semantic-Temporal Hierarchy

In this section, we examine the effects of modeling the semantic-temporal hierar-
chy. As HTT [52] has well demonstrated the benefits of leveraging this hierarchy
in recognition tasks, here we mainly examine its benefits for motion prediction,
especially on sequences longer than 2 secs where global action is more apparent.
Action for Prediction We first compare the long-term prediction decoded from
mP and mA, i.e., the two strategies P.a, P.b described in Sec. 3.2, to examine
the effectiveness of involving A for long-term prediction. As shown in Tab. 3
and Fig. 4, generations from mA are more realistic and plausible, with lower
FID and more consistent global motion. In contrast, results of P.a show larger
diversity due to its short-term modeling, but lack fidelity or regularity for long-
term motion. Overall, the comparison shows the importance of action modeling
in generating faithful and action-guided motions.
Mid-level for Prediction In addition to enabling a decoupled training strategy
for P and A (Sec. 3.3), the modeling of mid-level features should enhance the
learning of generation. To verify it, we construct a flattened baseline (i.e., w/o
mid-level) by removing the mid-level representation and instead using a single
transformer VAE to directly model pose and action. For this flattened baseline,
its encoder takes hand poses and objects as input and outputs for action recog-
nition; its decoder directly outputs the future hand poses. The flattened baseline
has a comparable amount of parameters as P and A, and is trained on the same
dataset as our framework for fair comparison.

From Tab. 4 we find that under a comparable FID, the mid-level represen-
tation enables better diversity (3rd, 5th rows); meanwhile, as we increase the
generation diversity of the flattened baseline via more noisy sampling, its ac-
curacy significantly degrades (4th, 5th rows). From Fig. 4, we can see that the
flattened baseline results lack global regularity, despite its modeling of pose and
action through a powerful end-to-end transformer VAE. The comparison shows
that the mid-level representation enables easier learning of global motion regu-
larity, as it decouples the complex task of action-guided motion generation into
hierarchical subtasks better captured by P and A respectively.

4.5 Discussion

We make more observations about motion prediction, training strategy, and mid-
level representation, to give additional understanding of the framework. Due to
space limit, we provide more details in supplementary.
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Training with Assembly101 We find that including the large-scale Assem-
bly101 for training G-HTT significantly benefits motion prediction on H2O and
action recognition, although the pose annotation of Assembly101 is not suffi-
ciently accurate for training pose estimators (cf . [36]). The finding points to the
importance of large-scale pretraining of fundamental modules.
Predicting Action Transition We observe that our model can generate smooth
transitions between actions, It probably comes from training P on sequences of
mixed action annotations (Sec. 3.3), which allows P to drive the transition by
decoding local motions into new actions. Meanwhile, it is also facilitated by the
decoupled training of P and A.
The Mid-level Regularity We blend mid-level features of two different input
pose sequences, and decode the blended mid-level features into pose sequences.
The generated motions naturally interpolate between the tendencies of two given
inputs, showing the regularity of the learned mid-level representation.

5 Conclusion

We present a novel unified framework for understanding hand pose and ac-
tion, which concurrently models both recognition and prediction, and captures
the hierarchy of semantic dependency and temporal granularity. The framework
addresses tasks of 3D hand pose refinement, action recognition, and 3D hand
motion prediction, showing improved performances than isolated solutions. The
framework has two cascaded Transformer VAE blocks to model pose and action
respectively. Both blocks have their encoder and decoder output respectively for
recognition and prediction, while their VAE bottleneck extracts the temporal
regularity synergized between the two sides. A mid-level clip-wise motion repre-
sentation is further introduced to bridge the two blocks. The connected cascade
enables regular pose and action modeling over both short and long time spans,
and brings flexibility to train the two blocks separately on multiple datasets
with different setups and annotation granularities. Extensive experiments val-
idate the performance and design of our framework on both recognition and
prediction across different datasets.
Limitations and Future Work We assume a fixed camera viewpoint for input
videos; to process cases with drastic camera movement (e.g ., egocentric views
with large head motions), an explicit decomposition of hand and camera motion
would be necessary, which we leave as future work. Another aspect is to leverage
hand motion as priors for robust recognition of manipulated objects, therefore
further benefiting action understanding. Moreover, extensions to cross-dataset
settings and human body pose action modeling are also interesting directions
for broader impacts.
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