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Abstract. We introduce a novel framework for generating photorealistic
synthetic images of human hands conditioned to a precise pose annota-
tion. We propose a supervised Random Variable Variational Autoencoder
(SRV-VAE), a model that disentangles and encodes the appearance and
pose of the hand into separate components of the latent space. Appear-
ance, representing individual subject traits, is unsupervised. Hand pose is
strictly supervised and yields control over the synthesis process. Leverag-
ing the robust RV VAE variant, our architecture ensures stable training
and accurate encoding of complex hand dynamics. Our model is capable
of generating hand images of previously unseen hand poses for specific
subjects. Experimental results indicate the model’s efficacy in synthe-
sizing realistic and varied hand images, holding significant promise for
advancements in both academic research and practical applications such
as data upsampling, where accurate hand pose and texture data is criti-
cal.

1 Introduction

The accurate estimation of hand pose, shape, and appearance from visual data,
as well as the related problem of generating realistic hand images are challeng-
ing tasks with widespread applications in fields such as virtual reality, human-
computer interaction, and robotics. A critical aspect of advancing these applica-
tions lies in the availability of large-scale, high-quality datasets that can be used
to train robust machine learning models. While real-world data collection has
made significant progress, particularly with the introduction of depth sensors
and advances in deep learning techniques, the limitations in data quality, diver-
sity, and annotation consistency still pose challenges to model development. To
address these issues, synthetic data generation has emerged as a viable alterna-
tive, providing a scalable solution to augment real-world datasets and enhance
model performance.

In recent years, generative models have garnered significant attention for their
ability to create realistic data samples that closely resemble real-world data.
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Techniques such as Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs) have demonstrated remarkable success across various do-
mains, particularly in image generation. Despite these advances, generating re-
alistic hand images remains a challenging task due to the complexity of hand
anatomy and the need for precise control over hand poses. While GAN-based
methods like GANerated Hands. [15] have made strides in synthesizing diverse
hand poses, diffusion models have struggled with generating anatomically accu-
rate hand images, often resulting in distorted outputs.

To overcome these challenges, this paper introduces a novel approach using a
Supervised Random Variable Variational Autoencoder (SRV-VAE) for the gen-
eration of realistic hand images conditioned on specific hand poses. Our method
builds upon the strengths of Random Variable VAE (RV-VAE) [17], which has
been shown to effectively encode and take advantage of complex data represen-
tations by directly utilizing the entire distribution of the latent space, leading to
improved performance in image generation tasks. By incorporating supervision
into a part of the latent space for the pose and leaving the other part unsuper-
vised for the appearance, our approach allows for fine-grained control over hand
image generation. This is achieved by combining an appearance vector with a
pose configuration, ensuring that the synthesized images are both realistic and
pose-accurate even on unseen hand poses, as depicted in Fig. 1.

We present a comprehensive evaluation of our SRV-VAE framework, demon-
strating its effectiveness in generating high-quality hand images across various
poses. We compare our approach against existing methods, highlighting its ad-
vantages in terms of both qualitative and quantitative metrics. Additionally, we
explore the utility of our generated images in enhancing the performance of hand
pose estimation models, providing evidence of the broader applicability of our
approach in augmenting hand image datasets.

Overall, our contributions are threefold: 1) We introduce SRV-VAE, a novel
generative model that enables controlled and realistic hand image generation by
disentangling hand pose and appearance in the latent space. 2) We demonstrate
the effectiveness of SRV-VAE in generating high-quality hand images, even for
previously unseen poses, by conducting extensive experiments on benchmark
datasets. 3) We show that the generated images can be used to enhance the
performance of hand pose estimation models, illustrating the practical value of
our approach in real-world applications. By addressing the challenges of hand
image generation with SRV-VAE, this work contributes to the ongoing efforts
to improve hand pose estimation models and provides a robust framework for
generating synthetic hand images with precise pose control.

2 Related Work

Research on visual hand pose, shape, and appearance estimation, as well as
the related problem of image synthesis given this information, have progressed
in strides in the recent years. Significant contributions that aided advance the
field include the introduction of depth sensors [30], the deep learning revolu-
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Fig. 1: By utilizing the normally distributed unsupervised latent texture space and the
supervised hand pose space, our method is capable of generating realistic hand images
even on unseen 2D/3D hand poses.

tion [11], and the availability of large, relevant, high quality datasets [3,15]. The
state of the art today relies on increasingly accurate and high quality data to
train better systems on [29]. This demand has led to bigger and better real-
world datasets [14], but also to the introduction of synthetic data generation
approaches to bootstrap or even complement training [12,13].

Generative models have drawn significant attention in recent years with their
improving capabilities in creating new data samples that resemble real-world
data. With the advent of deep learning, architectures such as Generative Adver-
sarial Networks (GANs) and Variational Autoencoders (VAEs), have achieved
remarkable success across various domains, including image generation, natu-
ral language processing, and music composition. For instance, GANs have been
utilized to generate realistic images from textual descriptions [6, 24]. Similarly,
VAEs have shown proficiency in generating high-quality data by learning latent
representations [9]. Specifically for image generation, one of the latest and most
successful approaches involves diffusion models, which progressively denoise an
initially random image to produce high-quality outputs [7,26]. The evolution of
these models has led to remarkable instances, such as the DALL-E series, Stable
Diffusion, and MidJourney, which generate high-quality, customizable images
from textual descriptions, pushing the boundaries of generative models [25].

Despite this remarkable progress, diffusion models for images are notoriously
bad at generating realistic hands, often producing distorted or anatomically in-
correct results. Moreover, accurate hand pose annotation is crucial for generating
synthetic data to be used for training machine learning models. Therefore, spe-
cialized techniques are still required to overcome these challenges and achieve
controllable, precise, high quality hand image generation.
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2.1 Hand generative models

The need for precise hand pose representation in synthesized, high-quality images
has led to the development of dedicated generative models specifically tailored
for hand images. “GANerated Hands” by Mueller et al . [15] is one of the early
successful works on this topic. By leveraging Generative Adversarial Networks
(GANs), the approach creates realistic hand images that can be used for train-
ing pose estimation systems. The method addresses the scarcity and limitations
of existing hand datasets by generating a diverse array of hand poses and ap-
pearances that enhance the robustness of hand pose estimation models. While
this method can produce realistic hand images, it requires a whole synthetic
hand image instead of just one pose configuration. Moreover, this method makes
synthetic hand images more realistic and does not add more variance to the
texture/appearance of the generated hand images.

Further refining the capabilities of GANs in the domain of hand image syn-
thesis, H-GAN, introduced by Oprea et al . [18], adopts a cyclic consistency
approach [31] that improves the generation process and manages to focus sep-
arately on different aspects of the hand, such as preserving the pose of a given
image, and altering the texture. While this approach allows for the creation of
realistic looking images, it relies on 3D rendering to do so, whereas our proposed
approach allows for the generation of new samples directly from real-world data
by having control over the pose and the variance of the appearance.

Achieving realism in hand image synthesis requires careful consideration of
lighting and illumination, a challenge that Chen et al . tackle in their work UR-
Hand [2]. Their method enhances the realism of synthesized hand images by
generating specific poses under varying lighting conditions. However, it main-
tains a consistent base texture for the hand, which limits the diversity in the
appearance of the generated hands.

In the context of diffusion models, which have typically struggled with the
complex structures of hands, the work of Yang et al . [27] introduces an innovative
approach to improve the quality of synthesized hand images. By incorporating
hand pose annotations and focusing on the accurate portrayal of hand anatomy,
this method aims to overcome the common distortions and inaccuracies encoun-
tered in standard diffusion model outputs.

Another diffusion-based approach is HanDiffuser [16] which generates realis-
tic images of hands in scenes described by a text prompt. This approach uses
the pose of a hand which is extracted from an estimated full-body pose, as an
intermediate supervision to generate the final image. The main input to this
method is text and does not offer precise control over the poses.

Methods that are used with traditional rendering approaches are HTML by
Fu et al . [23] and similirally Handy model [22]. Both methods disentagles the
texture from the mesh of the hand, however are not suitable for direct image
synthesis since both requires complex pipelines to estimate lighting conditions
and the background.
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2.2 Supervision in generative models

The incorporation of supervision techniques into generative models has proven
to be a powerful strategy for enhancing model performance and reliability. One
of the notable advancements in this area, for the related problem of controlling
the body pose of a depicted human, is ControlNet by Zhang et al . [29], which
integrates supervised learning to guide diffusion models in the image generation
process. The resulting method is suitable for tasks requiring accurate control
of human poses. While this method can produce realistic images that contain
hands given a 2D pose, it requires the whole body pose and struggles to generate
images that are focused on hands explicitly.

Supervised approaches have also been extended to autoencoders and Varia-
tional Autoencoders (VAEs). For instance, the work by Le et al . [10] introduces
supervision into autoencoders to enhance learning efficiency and output consis-
tency. This can be particularly beneficial in applications such as medical image
analysis. In VAEs, Berkhahn et al . [1] demonstrate how supervised learning can
be utilized to enforce specific properties in the generated images, further en-
hancing the utility of VAEs in complex image generation tasks like hand pose
estimation. Additionally, the integration of supervision techniques has proven
effective in anomaly detection, as shown by Kawachi et al . [8]. Their approach
uses supervised learning to refine the model’s ability to identify and differentiate
normal from anomalous patterns, which is crucial for ensuring the quality and
usability of generated datasets in training other models.

Overall, the current state-of-the-art can achieve high quality hand images
of a given pose using diffusion models, however at a high computational cost.
Faster approaches such as GANs and VAEs have their own limitations, such as
requiring an input image of the target hand pose, and poor generalization to
unseen poses and variety of appearances. In this work, we present an approach
that can bridge these gaps, achieving fast, high quality hand image generation,
including previously unseen hand poses.

3 Methodology

In this work we present a novel approach that employs Supervised Random
Variable VAE (SRV-VAE) for the synthesis of realistic hand images given a
known pose. SRV-VAE facilitates the disentanglement of hand pose and arbi-
trary appearance vectors, crucial for conditional generation, allowing control over
the generation process. An overview of our approach is depicted in Fig. 2. By
leveraging the stable training and precise encoding capabilities of RV-VAE [17]
(Sec. 3.1), we establish a partially supervised latent space for hand poses by
employing conditioning modifications in the VAE architecture (Sec. 3.2). This
way, hand pose, and appearance features are effectively disentangled within the
latent space, producing a visual combination of the two during the forward pass
of SRV-VAE (Sec. 3.3). The resulting encoder provides an estimation of the in-
put hand pose and encodes the appearance information separately from RGB
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Fig. 2: The proposed SRV-VAE architecture, for an RGB hand image input x, disen-
tangles the latent space into the unsupervised random variable zt, and the supervised
random variable zp. The zt random variable depicts the encoded texture vector and
follows a standard normal distribution, while the zp random variable depicts the es-
timated hand pose and follows a δ distribution. By leveraging the capabilities of the
RV-aware architecture we forward these distributions directly to the decoder for recon-
structing the input RGB hand image.

hand images, while the decoder generates realistic hand images based on specific
poses and arbitrary appearance vectors.

3.1 RV-VAE

The formation of the latent space and the generative capabilities of VAEs is
attributed to the training procedure of optimizing the ELBO loss as defined by
Kingma and Welling in [9] and shown in Eq. 1. We follow the standard notation
as used in that work [9].

L(θ, ϕ;x) = −DKL(qϕ(z|x)||pθ(z)) + Eqϕ(z|x)[log pθ(x|z)]. (1)

The symbols used denote: qϕ(z|x) is the approximate posterior distribution over
the latent variable z given the data x, parameterized by ϕ and typically modeled
using a neural network, the encoder. Similarly, log pθ(x|z) is the log-likelihood of
the data x given the latent variable z, parameterized by θ and typically modeled
as another neural network, the decoder. Additionally, pθ(z) denotes the prior dis-
tribution over the latent variable z, often chosen to be a simple distribution like
a standard normal distribution N (0, 1). The term Eqϕ(z|x) denotes the expecta-
tion of the log-likelihood with respect to the approximate posterior distribution
over z. Finally, the term DKL denotes the Kullback-Leibler divergence between
the two distributions, the approximate posterior qϕ(z|x) and the chosen prior
pθ(z).

Since the second term in this loss formulation, the expectation Eqϕ(z|x) is
practically intractable, the authors suggest forming Monte Carlo estimates of it,
with the final estimation becoming:

L(θ, ϕ;x) ≃ L̃(θ, ϕ;x) = −DKL(qϕ(z|x)||pθ(z)) +
1

L

L∑
l=1

(log pθ(x|z(l))), (2)
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where L denotes the number of samples drawn, as implemented by the reparam-
eterization trick.

Nicodemou et al . [17] showed that this sampling can be avoided by using
special differentiable Random Variable operations inside the decoder’s architec-
ture, and in this way utilizing the whole distribution of qϕ(z|x) which describes
the encoder’s output. This modification has been shown to improve the overall
performance of VAEs in terms of reconstruction and image generation without
hindering the convergence rate.

Empirical evidence (Sec. 4.4) shows that RV-VAEs manage to better disen-
tangle complex data representations, such as those of hands, particularly when
using supervised encoded attributes, such as hand poses. This is ascribed to the
fact that parts of the latent space (supervised or not) are utilized completely by
the network as RVs and prevent any data loss since there are no sampling pro-
cedures. This results in the accurate and distinct formulation of encoded regions
of the latent space.

3.2 Supervised RV-VAE

The beneficial usage of RV-VAE has been reported in [17] for image generation
on multiple datasets. However, following this methodology gives no control over
any specific attributes we would like to impose in the generation process. Any
specific image creation given a requested attribute would require a search in the
“opaque” latent space. Therefore we need to enforce some form of structure in
the latent space. To achieve this, a natural choice is the language of conditional
probability distributions, already used since the original formulation of VAEs. In
our case, our goal is to approximate the conditional probability of a hand image
given a specific hand pose, disentangled from the rest of the latent space.

The conditioning of image generation is achieved by supervising a subset of
the latent space within the RV-VAE training procedure. By incorporating super-
vision into specific dimensions of the latent space, we aim to impart control over
specific aspects of image generation. This novel strategy enables the generation
of images conditioned not only on random noise but also on structured latent
representations.

Specifically, the whole latent space S ⊆ Rn (for suitable dimensionality n) is
divided into two sub-spaces, the new supervised and the regular unsupervised
sub-space. This is achieved by the output of the encoder in the RV-VAE archi-
tecture with a modification of the encoder’s final layer. Specifically, for a hand
pose p with D spatial dimensions and K keypoints, and a latent texture vec-
tor of size T , the encoder outputs the parameters of a latent random variable
z ∈ R(D×K+T )×2 with the last dimension being the two distribution parameters,
mean and variance. The random variable z is the concatenation of the random
variable zp ∈ RD×K and zt ∈ RT that depict the hand pose and the encoded
latent texture space of the input, respectively.

The general form of the ELBO loss in Eq. 1 is modified to incorporate the
new conditionality of the latent space, and is given by:



8 V. C. Nicodemou et al.

L(θ, ϕ;x) =−DKL(qϕ(zt|x)||p(zt))+
Eqϕ(zt|x),qϕ(zp|x)[log pθ(x|z)] + Ep(zp|x)[log qϕ(zp|x)].

(3)

In Eq. 3, qϕ(zt|x) is the encoder’s first output that we want to match to the
prior distribution p(zt) over the latent variable zt (which is the standard normal
distribution N (0, I)). pθ(x|z) is the decoder’s output, that is, the reconstruction
of x given z where z is the concatenation of both random variables zt, zp. Finally,
qϕ(zp|x) is the encoder’s second output representing the regressed hand pose.
This is compared to the true posterior p(zp|x), that is, the known hand pose x.

The encoder outputs the parameterization of a distribution, specifically its
first two moments. For a training set of hand images, the ground truth hand
poses can be described by a degenerate distribution P (X = p) = 1, separately
for each hand pose p as they can be considered independent constant random
variables with a probability density function described by Dirac delta function
δ(x−p). In this paper the goal is hand image generation conditioned on a given
hand pose. Therefore, for an input image x with associated hand pose p, the
optimization of Ep(zp|x)[log qϕ(zp|x)] term from Eq. 3 is equivalent to minimizing
the mean 1

K

∑K
i=1(pi−p̂i)

2 and the variance 1
K

∑K
i=1(var[zpi

])2 of the Encoder’s
output, where p and p̂ = E[zp] are the ground truth pose with K keypoints and
the estimated (by the encoder) hand pose, respectively.

Since the encoder outputs the parameters of distributions, by utilizing the
advantages of RV-VAEs we can forward these distributions (of pose and ap-
pearance) directly to the decoder. This is possible since the modules inside the
decoder are designed to operate on random variables instead of samples (like the
reparameterization trick would provide in regular VAEs).

3.3 Forward pass of SRV-VAE

Given the formulation described in Sec. 3.2, during inference, for a test sample
x, the encoder will output its estimated hand pose in the form of E[zp].

While the encoder’s estimation of hand poses from RGB images might be
straightforward, the generation of new images requires further elaboration due
to the treatment of the latent data as random variables. Specifically, in order to
create an RGB hand image we require a hand pose p that we desire to generate
and a random vector texture encodings zt. By concatenating the flattened vector
of p with the texture vector zt we create the latent vector z. The decoder then
takes this representation of a latent distribution, and in contrast to regular VAE
architectures [9], it does not perform a reparameterization trick. Instead, using
the RV-VAE approach [17], the two distributions are propagated throughout
the layers of the decoder toward the output, with one being the distribution of
encoded hand texture N (E[zt], var[zt]), and the other of the hand pose δ(x −
E[zp]). The output will be a generated hand image of E[zp] pose and visualized
with the respective texture appearance.
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4 Experiments

We conducted several experiments over a couple of models and datasets to eval-
uate and assess the performance of the proposed SRV-VAE framework. Specif-
ically, we created variations of a regular VAE architecture [9] and of one based
on Soft-Intro-VAE [4], a state-of-the-art approach in generative VAE architec-
tures. These variations were modified to become RV-aware models based on the
approach by Nicodemou et al . [17], and further modified to incorporate latent
space conditionality, as described in this work. Both model architectures were
trained on two datasets, the Stereo Hand Pose Benchmark (STB) [28] with 2D
keypoint hand poses and the InterHand2.6M [14] with 3D keypoint hand poses.
Experiments focused on highlighting the quality of hand images conditioned on
specific poses (Sec. 4.2) as well as the quantitative assessment of the genera-
tive capabilities (Sec. 4.3). Since this work depends on the beneficial usage of
RV-VAEs, we investigated the contribution that RV-aware models provide to
the conditionality problem we tackle in this work, compared to regular S-VAE
architectures (Sec. 4.4). The byproduct of generating images from disentangled
latent space can be utilized as appearance transfer between poses (Sec. 4.5) or
up-sampling sparse hand datasets (Sec. 4.6), both strengthen the motivation of
this work. All experiments were conducted on the Stereo Hand Pose Benchmark
(STB) [28] and the InterHand2.6M [14] datasets.

4.1 Implementation Details

All models and architectures were implemented using the PyTorch [20] library.
From the STB dataset, we used sequences labeled as “Random” for training (9k
samples) and sequences labeled as “Counting” for testing (9k samples). For hand
pose ground truth annotation, we extracted and used 2D hand keypoints. From
the InterHand2.6M, we used the train/test split of single right hand images
defined by the dataset. From both sequences we removed frames and poses with
occlusions or erroneous visual annotations, resulting in 20k training and testing
samples. For this dataset, we used 3D hand keypoints.

4.2 Qualitative Results

To illustrate the proposed method’s generative capabilities we report some qual-
itative results for all trained methods on both datasets. Specifically, Fig. 3 il-
lustrates the generative results on both datasets from SRV-VAE. Furthermore,
Figs. 4 and 5 show the generative results from the Soft-Intro-SRV-VAE architec-
ture. All images were generated by using unseen test hand poses and by changing
their appearance randomly, by concatenating each time a different random tex-
ture vector with the test hand pose. We can observe the high quality of generated
images resulting from the Soft-Intro-SRV-VAE. The Soft-Intro-RV-VAE’s archi-
tecture and training procedure yields a higher quality of images compared to the
regular RV-VAE architecture. We can also observe some slight changes in the
generated poses (specifically in the last two columns of Fig. 4) when iterating
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(a) STB dataset (b) InterHand2.6M

Fig. 3: Generated hand images using the SRV-VAE model on the two datasets. Each
column has fixed test (unseen) poses, and each row changes the random appearance
vector.

through random appearance vectors. This can be attributed to the fact that the
specific training set (STB) consists of fewer samples than the InterHand2.6M,
making the disentanglement of pose and appearance more challenging.

4.3 Quantitative Results

A commonly used and reliable method to quantitatively assess the quality of
generated samples of a generative model based on a training dataset is by using
the Fréchet Inception Distance (FID) metric [4, 17, 19]. This metric measures
the distance between the distributions of real and generated images, providing
a quantitative assessment of how similar the generated images are to the real
ones.

Given the nature of the problem this work aims to tackle, the generative
process does not depend only on the training set but also on a test set, as
generated images are conditioned on the unseen poses of that test set. Therefore,
the comparison between the distributions of training and generated images is not
indicative, since by design, we want them to differ. For that reason, we need to
consider two different comparisons: (a) between the distributions of training
images and generated images conditioned on poses seen in the training set, and
(b) between the distributions of test images and generated images conditioned
on unseen poses from the test set. We want those differences not to be far
apart, showing that the quality does not change drastically when generated from
different distributions.

In Tab. 1 we report the FIDs that measure the distance between the dis-
tribution of training set images and the distribution of generated images from
poses of the same training set. Respectively, in Tab. 2 we present the FIDs that
measure the distance between the distribution of test set images and the dis-
tribution of generated images from unseen poses of the test set. As expected,
differences when comparing the generated images from seen and unseen poses
are very small, indicating a good quality of hand images.
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Fig. 4: Generated hand images using the Soft-Intro-SRV-VAE model on STB dataset.
Each column has fixed test (unseen) poses, and each row changes the random appear-
ance vector.

Table 1: FIDs values that measure distances for generated images between real train-
ing set distribution and generated (known training poses) distribution for different
combinations of datasets and methods.

Method Dataset FID ↓

SRV-VAE STB 25.27
SRV-VAE InterHand2.6M 16.30
Soft-Intro-SRV-VAE STB 11.07
Soft-Intro-SRV-VAE InterHand2.6M 10.59

4.4 SRV-VAE vs regular S-VAE

To make a fair comparison between SRV-VAE and regular S-VAE that specialize
in conditioning the latent space as stated by our problem, we are required to
sample from two sub-spaces (the pose and texture) for the regular S-VAE. This
is crucial for the training of the S-VAE network, while the SRV-VAE takes all
distributions as they are (Sec. 3.2).

We trained both networks, SRV-VAE and S-VAE, on the STB dataset and
validated the comparison on the test set as described in Sec. 4.3. Table 3 reports
the FIDs on the regular supervised VAE compared to the previously reported
FIDs of the RV variant. We observe that the RV modules in the network con-
tribute significantly towards the generative capabilities of the method. This im-
provement can be attributed to the fact that SRV-VAE does not depend on any
sampling during training, whereas the regular S-VAE requires sampling from two
spaces. This double sampling introduces even more uncertainty into the training
pipeline.
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Fig. 5: Generated hand images using the Soft-Intro-SRV-VAE model on Inter-
Hand2.6M dataset. Each column has fixed test (unseen) poses, and each row changes
the random appearance vector.

Table 2: FIDs values that measure distances for generated images between real test set
distribution and generated (unseen test poses) distribution for different combinations
of datasets and methods.

Method Dataset FID ↓

SRV-VAE STB 26.84
SRV-VAE InterHand2.6M 16.13
Soft-Intro-SRV-VAE STB 14.62
Soft-Intro-SRV-VAE InterHand2.6M 9.27

4.5 Appearance Transfer

The formulation we use in this work disentangles the appearance and pose of an
image depicting a hand as explained in Sec. 3.2. The disentanglement is enforced
by the encoder of the network, which outputs separately: an estimation of the
encoded texture, random variable zt, and an estimation of the hand pose of
the input, random variable zp. This implies that a trained encoder can yield an
appearance estimation of an input image that can be “enforced” on a different
pose to generate new images as seen in Fig. 6.

4.6 Quantitative Evaluation on Downstream Problems

Given the nature of the proposed approach, a meaningful question to ask is
whether it can be used to improve the quality of existing datasets, by perform-
ing a domain-aware data augmentation. Specifically, given a hand pose dataset,
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Table 3: FIDs values that measure distances for generated images between real test set
distribution and generated (unseen test poses) distribution for different combinations
of datasets and methods.

Method Generation Type FID ↓

STB on S-VAE Train (seen) poses 26.41
STB on S-VAE Test (unseen) poses 29.72
STB on SRV-VAE Train (seen) poses 25.27
STB on SRV-VAE Test (unseen) poses 26.84
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Fig. 6: The trained encoder can be used to extract the appearance of an input image
that can be transferred to a different pose via the decoder.

one can use the proposed approach to generate more training samples, by com-
bining hand poses from one subject with the appearance of another, effectively
“upsampling” the existing dataset into a denser one. Such an approach would
enrich the existing dataset, potentially improving the accuracy of a keypoint
detector trained on the resulting augmented data. To assess this hypothesis, we
implemented a hand keypoint detector network based on the ViT architecture [5].
Specifically, using ViT as the backbone, we added a head for the prediction of
the hand joint positions, inspired by [21]. The resulting network consists of 10M
parameters.

We trained this detector on two subsets of the datasets we used, STB and
InterHand2.6M. Each was augmented, and we compared the performance with
and without the augmented data. Specifically, we used subsets of the original In-
terHand2.6M and STB datasets consisting of 4000 and 1800 images, respectively.
These datasets were augmented with 8000 and 3600 images. We also selected a
test set for each, consisting of 4100 and 1800 images, respectively. To ensure a
fair comparison, the networks trained on the original datasets were trained for
twice as many epochs as those with augmented datasets, matching the doubled
amount of training data in the latter.
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Table 4: Mean per Joint Positional Error (MPJPE) comparing the performance of
the implemented keypoint estimator on original and augmented versions of the two
datasets we experimented on.

Dataset Original Augmented

STB (pixel space) 11.74 10.59
InterHand2.6M (mm) 11.51 11.73

As shown in Tab. 4, the augmentation is always at least non-disrupting, and
in the case of one of the datasets, it helps significantly reduce the resulting
estimation error. This is attributed to the diversity difference between the two
datasets: STB has only one subject gesturing a limited range of hand gestures,
whereas InterHand2.6M is more diverse, both in subjects, and in the performed
gestures. These results show that our approach is particularly beneficial as a
dataset augmentation tool for the case of small or non-diverse datasets, while
not hurting the final performance in other cases.

5 Conclusions

In this paper, we introduced SRV-VAE, a novel supervised variational autoen-
coder framework designed to generate realistic hand images conditioned on
specific hand poses. Our approach effectively addresses the challenges associ-
ated with hand image generation, particularly the need for precise control over
pose and the synthesis of anatomically accurate hand images. By leveraging the
strengths of the RV-VAE architecture and incorporating supervision into the
latent space, SRV-VAE enables the disentanglement of pose and appearance, re-
sulting in high-quality and diverse hand image outputs. Our experiments show
that SRV-VAE produces visually convincing images even from unseen poses. This
outcome can be beneficial in augmenting datasets with the task of enhancing the
performance of hand pose estimation models. Future work includes expanding
the SRV-VAE to disentangle the latent space even further, specifically the ap-
pearance domain into separate subdomains (shape, texture, illumination, etc.),
and investigating the use of SRV-VAE in other aspects of real-world data.
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