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Abstract

In this paper, we study task-oriented human grasp syn-
thesis, a new task aiming at synthesizing human grasps that
require the awareness of its task and context. At the core
of our method is the task-aware contact maps. Unlike tra-
ditional contact maps that only reason about the object it-
self and its relation with the hand, our enhanced maps take
into account scene and task information. This comprehen-
sive map is critical in hand-object interaction, leading to
accurate grasping poses that align with the task. We pro-
posed a two-stage pipeline that first constructs a task-aware
contact map informed by the scene and task. In the subse-
quent stage, we use this contact map to predict task-oriented
grasping poses. To validate our approach, we introduced
a new dataset for task-oriented grasp synthesis. Our ex-
periments demonstrate the superior performance of our ap-
proach, surpassing existing methods on both grasp quality
and task performance.

1. Introduction

In this paper, we explore task-oriented human grasp syn-
thesis, which aims to generate grasps that consider environ-
mental context and manipulation goals.

We construct a new task-oriented grasp dataset to sup-
port the development and evaluation of this problem. We se-
lect three everyday tasks—placing, stacking and shelving—
because they require spatial awareness to avoid collisions
with nearby objects, as well as to discern the object’s affor-
dance relevant to the task. We have selected 104 daily ob-
jects from DexGraspNet [15], which include items like bot-
tles, jars, stationery, toys, food, shoes, and 3C electronics
for the task of Placing and Shelving. Additionally, we have
created 23 distinct bricks, each derived from fundamental
geometric shapes, for the task of Stacking. For each task,
we establish a systematic pipeline to generate ground truth
human grasps. Overall, our dataset contains 571,908 task-
oriented human grasps for placing, 2,989 human grasps for
stacking, and 807,028 for shelving.
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Figure 1. The Task-oriented Human Grasp Synthesis aims to an-
ticipate human-like, collision-free, and task-aware grasping poses
given the initial and intended goal scene. In this work, we intro-
duce Task-aware contact map, an enhanced contact representa-
tion that specifies where and how to grasp an object depending
on various tasks and environments. We designed 3 daily scenar-
ios: placing; handover; and stacking to evaluate predicted grasp-
ing poses. Our experiments show significant improvement in past
work.

We highlight two challenges that current human grasp
synthesis algorithms [4, 8, 10, 11] for task-oriented human
grasp synthesis. First, current techniques prioritize stable
contact with an object’s surface through object-centric rep-
resentations, such as object affordance represented by con-
tact map[4, 8, 10, 11]. However, object affordance does
not account for object-environment interaction, which is vi-
tal for lifting and stacking bricks. Therefore, object-centric
methods may struggle or fail in cluttered scenes. Sec-
ond, current techniques do not consider downstream tasks.
Hence, the synthesized grasps, while they maybe collision-
free at the initial grasping stage, can result in scene collision
at task completion.

To this end, we propose a new two-stage diffusion-based
framework, driven by the proposed task-aware contact map,
to address the synthesis of task-oriented human grasps. A



task-aware contact map incorporates crucial information
about the context and the task. The two-stage diffusion-
based framework consists of (1) ContactDiffuser, which
predicts a task-aware contact map for an object, given the
point clouds of the initial and goal scenes along with the ini-
tial and goal distance maps, and (2) GraspDiffuser, which
synthesizes human grasps from the predicted task-aware
contact map and the object’s point cloud. We conduct exten-
sive experiments on the proposed dataset and demonstrate
that our framework surpasses strong baselines on grasp syn-
thesis in terms of physical plausibility, and collision avoid-
ance.

2. Related Work

Human Grasp Synthesis. The study of human grasp
synthesis is segmented into three distinct streams: object
model-based grasps [4, 8–11, 13] emphasize optimal hand-
object contact and allow approaching the object from any
direction, functional grasps [2, 7, 16] consider an object’s
affordance, requiring a grasp on the object’s part that en-
ables its intended use, and scene-aware grasps [3, 14] ac-
count for the object’s surroundings to prevent collisions and
enable effective grasp synthesis in cluttered environments.
In sum, object model-based grasps establish a foundation by
concentrating on contact points. Functional grasps broaden
this approach by identifying how to hold an object for its in-
tended use. Scene-aware grasps extend model-based grasps
by factoring in contextual information by including nearby
objects, ensuring the grasp is aware of the environment.
To the best of our knowledge, we are the first work to
study task-oriented human grasp synthesis, which encom-
passes obstacle awareness, environmental context, and the
intended task.
Object Affordance. ContactDB [1] introduce a dataset
containing contact maps for household objects, which ef-
fectively capture the intricate hand-object contact in grasp-
ing and handover scenarios via the use of a thermal cam-
era. AffordPose [7] explores affordance-aware hand-object
interactions, offering part-level affordance annotations for
each object, such as twist, pull, and handle-grasp, expand-
ing on the intentions explored in ContactDB. The work
mentioned above attempts to map specific grasping poses
with tasks. We observe that the mapping becomes challeng-
ing for tasks like placing or stacking, where the same task
can have varying goals, influencing how an object should be
grasped. Besides, grasping in unconstrained settings needs
to handle cluttered scenes with various objects. Depending
on the task and goal, humans determine where to interact
with or how to avoid colliding with their surroundings. In
this work, we propose a task-aware contact map that con-
siders the scene, the task, and the goal jointly.

3. Task-oriented Human Grasp Dataset
3.1. Task Description

We design three daily tasks for evaluating task-oriented hu-
man grasp synthesis. We employ PyBullet as our physics
simulator to generate diverse task configurations. Task con-
figuration is composed of initial and goal position of target
object and position of obstacles.

3.2. Data Generation

3D Human Hand Model. We adopt MANO [12], a dif-
ferentiable 3D human hand model. With a mesh has 778
vertices and 1538 faces, MANO provides a comprehensive
representation and can be integrated into training pipelines.
Object and Scene. We select 104 objects from DexGrasp-
Net [15], rescaling them to be graspable with one hand.
These objects are used in placing. For stacking tasks, many
of these objects aren’t appropriate. Thus, we create 24 dis-
tinct bricks based on simple geometry that are conducive to
stacking.
Task-oriented Human Grasps Generation. To produce
high-quality human grasps, we utilize DexGraspNet [15] to
generate human grasps. However, it may produce grasps
that are not physically plausible or human-l ike. To mit-
igate this, we filter out inferior grasps using penetration
volume and simulation displacement. Both metrics are fre-
quently used in grasp synthesis studies [8, 9, 9, 11, 13] to
assess the quality of grasp poses. We set the thresholds at
4 \times 10^{-6} \, \text {cm}^3    and 3 \, \text {cm} , respectively, to initially filter out
lower quality grasps. Subsequently, we manually remove
any grasping poses that do not appear human-like. Based
on specific task configurations, we adjust the hand’s posi-
tion, transitioning it from its initial state to its intended goal
state. During this transition, we conduct a thorough colli-
sion detection analysis involving all objects present in the
scene, except for the object currently being grasped by the
hand. If, throughout this process, the hand remains free
from any collisions, we consider the trial as successful and
save the configuration.

4. Methodology
Fig. 2 shows an overview of our pipeline with two key com-
ponents: ContactDiffusers for task-aware contact map pre-
diction, and GraspDiffusers for human grasp synthesis.

4.1. Problem Formulation

Given a 3D initial scene Si and goal scene Sg , we aim to
predict task-oriented human grasp G for accomplishing a
desired task. Both scenes contain the target object O to be
grasped. Our pipeline consists of two stages. In the first
stage, ContactDiffusers generates task-aware contact map
Ctask given Si and Sg . Ctask = Dcontact(Si, Sg). In the sec-
ond stage, GraspDiffusers synthesizes task-oriented human
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Figure 2. An overview of our proposed pipeline.

grasp with the target object O and the task-aware contact
map, G = Dgrasp(O,Ctask).

We present an improved representation of contact maps,
termed task-aware contact maps. Unlike traditional object-
centric contact maps [4, 8, 10, 11] that primarily focus
on predicting suitable contact with the object’s surface for
grasping. This object-centric modeling is insufficient in
real-world scenarios. There are two key factors for a task:
the affordance of the object, which dictates how humans
grasp different parts of the object to achieve various goals
or tasks, and the context of the scene, which often contains
multiple objects. Depending on the specific tasks and objec-
tives, humans decide whether to interact with these objects
or avoid collisions. To capture the information relevant to
the context and task, we use distance map, represented by
D. This map can be obtained by computing the shortest dis-
tance between the target object and the scene, thereby im-
plicitly incorporating the information of surroundings into
objects. When engaging in grasping, we prioritize contact
with regions on the object that are further from any obsta-
cles, thereby minimizing the possibility of collision with
nearby obstacles. Beyond addressing concerns of collision,
the distance map also provides insights into the ways ob-
jects interact with their environment, reflecting their state
or goal. We can obtain two maps, Dinit and Dgoal using the
initial scene and the goal scene. By incorporating this ad-
ditional information, our task-aware contact map becomes
a more sophisticated and effective instrument for modeling
hand-object interaction.

4.2. Context- and Task-aware Diffusers

To generate diverse and realistic human-object interaction,
we leverage the power of the diffusion model [5]. Contact-
Diffuser. We follow recent work on human motion gener-
ation [6] and use Transformer encoder-based model. This
model processes the current noisy contact map xt, the time
step t, and a set of conditioning variables C. The condition-
ing C includes the object’s point cloud, along with initial
and goal distance maps, denoted as Dinit and Dgoal, re-
spectively. Given that the prediction of contact maps is a

per-point task, we utilize PointNet++ to derive local fea-
tures. GraspDiffuser. We first employ self-attention on
noisy MANO parameters and object feature to discern the
relationships among the different joints and object feature.
Subsequently, we apply cross-attention to establish the cor-
respondence between the object and the MANO parameters.
This allows for a more nuanced understanding of the inter-
play between the object’s geometry and the hand model,
leading to more accurate and realistic grasps.

5. Experiments
We perform extensive experiments on our dataset. For plac-
ing, we test 21 unseen objects. As for stacking, we test on
6 unseen bricks. For every object in each task configura-
tion, we predict 16 grasps for the evaluation. The quality of
predicted grasps is evaluated based on their physically plau-
sibility, stability, and collision avoidance. Our experiments
aim to answer the following research questions. Can the
proposed method synthesize high-quality task-oriented
human grasps? While there is significant progress in hu-
man grasp synthesis, we are interested in identifying the so-
lution gap for the synthesis of task-oriented human grasps.

5.1. Human Grasp Synthesis Baselines

We compare the following baselines in our experiments.
GraspTTA [8]: GraspTTA utilizes CVAE to generate an
initial coarse human grasp and obtains the final grasp
synthesis through test-time adaptation, guided by a pre-
dicted contact map. Modified GraspTTA [8]: We mod-
ify GraspTTA by augmenting input point clouds with the
contact maps. FLEX [14]: FLEX is designed to generate
3D full-body human grasps. We re-purpose the method to
the generation of human grasps. Note that the optimiza-
tion is driven by the penetration losses in both initial and
goal scenes. ContactGen [11]: We train ContactGen to
predict the proposed object-centric representation. We then
use their method to generate the contact map, hand-part
map, direction map, and human grasp accordingly. SceneD-
iffuser [6]: We reimplement SceneDiffuser [6] to predict
MANO [12] hand parameters. We do not perform opti-
mization during inference because we apply three auxiliary
losses for generating physically plausible human grasps.

5.2. Metrics

We evaluate the synthesized human grasps based on their
physical plausibility, stability, and diversity, following prior
works [8, 11, 13, 14]. We propose a new metric called Task
Score (TS) to evaluate the quality of task-oriented human
grasp synthesis. Penetration Volume (PV): We calculate
the penetration volume by converting the meshes into 1mm
cubes and calculating the overlap of these voxels. Sim-
ulation Displacement (SD): We simulate the object and
predicted grasps in PyBullet for 1 sec. and then compute



Table 1. Task-oriented Human Grasp Synthesis Evaluation.
PV: Penetration Volume, SD: Simulation Displacement, CR:
Contact Ratio, QR: Qualified Ratio, OPP: Obstacle Penetration
Percentage, and TS: Task Score. The table reports the proposed
method can synthesize favorable task-oriented human grasp syn-
thesis, compared to strong baselines. FLEX [14] struggles to syn-
thesize stable grasps in Stacking due to its inability to handle
small bricks. Please see Fig. 3 for qualitative results.

Method PV↓ SD↓ QR(%)↑ Init
OPP(%)↓ Goal

OPP(%)↓ TS↑

Placing

GraspTTA [8] 1.85 2.60 58.57 21.67 17.91 0.376
ContactGen [11] 1.40 3.85 46.84 5.56 17.26 0.366
SceneDiffuser[6] 1.37 3.19 53.12 20.00 16.91 0.353

FLEX [14] 2.50 1.62 59.10 6.74 5.61 0.520
Ours 2.40 1.42 65.29 7.27 5.79 0.570

Stacking

GraspTTA [8] 4.30 0.28 35.00 26.04 8.32 0.237
ContactGen [11] 0.66 1.87 76.43 8.42 9.75 0.631
SceneDiffuser[6] 0.53 1.64 77.72 25.30 9.81 0.523

FLEX [14] 0 10.65 0.00 0 0 0
Ours 1.09 1.03 84.31 14.94 4.51 0.684

Shelving

GraspTTA [8] 1.78 2.56 58.94 15.46 13.43 0.431
ContactGen [11] 1.43 3.90 46.32 6.42 13.17 0.376
SceneDiffuser[6] 1.38 3.31 51.48 14.52 13.59 0.380

FLEX [14] 2.81 1.54 57.26 4.39 4.47 0.522
Ours 2.12 1.62 67.49 8.72 10.31 0.552

the object’s center of mass displacement. Qualified Ra-
tio (QR): The metric jointly considers both penetration vol-
ume and simulation displacement. Note that, a higher pen-
etration volume generally leads to a lower simulation dis-
placement, which is not satisfactory. We set thresholds at
3 \times 10^{-6} \, \text {cm}^3    and 2 \, \text {cm}  for penetration volume and simu-
lation displacement, respectively. We calculate the percent-
age of predicted grasps that satisfy both criteria. Obstacle
Penetration Percentage (OPP): We compute the penetra-
tion percentage of human grasp vertices in obstacles for ini-
tial and goal scenes [14]. Task Score (TS): A proper metric
for task-oriented human grasp synthesis should take grasp
physically-plausibility, stability, and collision avoidance in
both initial and goal scenes. Thus, we propose a new metric
and define it as TS = QR×(1−Init OPP)×(1−Goal OPP).

5.3. Results

Can the proposed method synthesize high-quality task-
oriented human grasps? We report our empirical studies
in Table 1. GraspTTA, ContactGen, and SceneDiffuser of-
ten result in lower penetration volumes (PV↓) but struggle
with stable grasps (SD↓) in Placing. FLEX seeks a balance
between penetration volume and simulation displacement.
Our method provides the optimal balance, as measured by
QR. The Stacking task is much harder as the objects are
smaller than Placing. GraspTTA [8] suffers from unsat-
isfactory grasp synthesis (QR↑) and severe mode collapse
(DS↑). FLEX [14] struggles with stable grasps in Stack-
ing due to its inability to handle small bricks The proposed
method demonstrates favorable grasp synthesis (QR↑) in
the challenging task. For OPP, ContactGen [11] shows a
lower Init OPP than Goal OPP, due to its grasp synthe-

Ours FLEX GraspTTAContactGen SceneDiffuser

Placing

Stacking

Shelving

Figure 3. Visualization of predicted grasping poses from our
method, ContactGen [11], FLEX [14], GraspTTA [8], and
SceneDiffuser [6].

sis strategy, which begins with the hand oriented face down
towards the ground. Our method achieves the best perfor-
mance in terms of TS, which evaluates the synthesis of hu-
man grasps for physical plausibility, stability, and collision
avoidance in initial and goal scenes.

5.4. Qualitative Results

Synthesized Human Grasps. The prediction results of
ContactGen [11], GraspTTA[8], and SceneDiffuser collide
with the scene severely, as shown in Fig. 3. FLEX [14]
synthesize grasps with unrealistic contact and fail to gener-
ate a grasp for Stacking. In contrast, our method produces
high-quality human grasps and can avoid collision with
obstacle.

6. Conculsion

In this work, we present a new task called task-oriented
human grasp synthesis along with a new dataset for devel-
opment and benchmarking. We show existing human grasp
synthesis algorithm struggle with generating high-quality
human grasps for the designed tasks. To this end, we
propose a novel two-stage diffusion-based framework pow-
ered by the task-aware contact map to incorporate crucial
information about the context and the task. We perform
comprehensive quantitative and qualitative experiments to
validate the effectiveness of our proposed framework in
comparison to strong baselines.
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