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Figure 1. Egocentric Action Scene Graphs are temporal dynamic graphs (G(t)) capturing the action verbs (nodes in blue), direct or active
objects (nodes in green), and other objects (nodes in yellow) involved in the activity performed by a camera wearer (the orange CW node).
Edges between nodes represent relationship between the verb and the objects or between object pairs. The graph evolves through time
providing a long-from representation of the egocentric video (dashed lines). Objects of interaction are grounded with bounding boxes.

Abstract

We present Egocentric Action Scene Graphs (EASGs), a
new representation for long-form understanding of egocen-
tric videos. EASGs extend standard manually-annotated
representations of egocentric videos, such as verb-noun ac-
tion labels, by providing a temporally evolving graph-based
description of the actions performed by the camera wearer,
including hands and objects involved in actions, their rela-
tionships, and how actions unfold in time. Through a novel
annotation procedure, we extend the Ego4D dataset adding
manually labeled Egocentric Action Scene Graphs which
offer a rich set of annotations for long-from egocentric
video understanding. We hence define the EASG generation
task and provide a baseline approach, establishing prelimi-
nary benchmarks. Experiments on two downstream tasks,
action anticipation and activity summarization, highlight
the effectiveness of EASGs for long-form egocentric video
understanding. We will release the dataset and code to
replicate experiments and annotations1 .

∗These authors contributed equally to this work.
1The code is available at https://github.com/fpv-iplab/EASG

1. Introduction

Wearable devices allow to capture video of human activi-
ties from an egocentric perspective. A proper analysis of
such video can enable a detailed understanding of how hu-
mans interact with the environment, how they manipulate
objects with their hands and tools, and, ultimately, what are
their goals and intentions. Easily covering sequences of ac-
tivities performed by the camera wearer in different phys-
ical locations, egocentric video is by its own nature long-
form [27]. Hence, typical applications of egocentric vision
systems require algorithms able to represent and process
video over temporal spans that last in the order of minutes
or hours. Examples of such applications are action anticipa-
tion [2, 8, 20], video summarization [5], and episodic mem-
ory retrieval [8]. Despite the relevance of such applications
in the panorama of egocentric vision [17], progress in this
area has been hindered by the lack of a comprehensive and
long-form representation of videos that algorithms can rely
on, with popular high-level human-gathered representations
being in the form of textual narrations [2], verb-noun action
labels [6], temporal bounds for action segments [2, 6, 12],
object bounding boxes [16], object state changes [8], and
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hand-object interaction states [4, 21], all short-range repre-
sentations describing temporal spans lasting few seconds.

We present Egocentric Action Scene Graphs (EASGs),
a novel graph-based representation for capturing actions
performed by a camera wearer in egocentric videos. The
proposed representation builds on the literature of scene
graphs [9, 10, 18] and extend traditional verb-noun action
labels to a structured temporal dynamic graph format that
encodes the objects involved, hands of the camera wearer,
action verbs, and their relationships throughout the video.

We augment the Ego4D dataset [8] with manually an-
notated EASG labels, gathered through a novel multi-stage
annotation and validation procedure. Following the scene
graph literature [9, 29], we benchmark the EASG gener-
ation task, providing baseline results and demonstrating
the feasibility of automatically generating these representa-
tions. Initial experiments show the effectiveness of EASGs
in tasks like action anticipation and activity summarization.

2. Egocentric Action Scene Graphs
Egocentric Action Scene Graphs (EASGs) provide anno-
tations for a video clip in the form of a dynamic graph.
We formalize an EASG as a time-varying directed graph
G(t) = (V (t), E(t)), where V (t) is the set of nodes at
time t and E(t) is the set of edges between such nodes.
Each temporal realization of the graph G(t) corresponds
to an egocentric action spanning over a set of three frames
defined as in [8]: the precondition (PRE), the point of no
return (PNR) and the postcondition (POST) frames. The
graph G(t) is hence effectively associated to three frames:
F(t) = {PREt, PNRt, POSTt}. G(t) has two fixed
nodes: the camera wearer node vcw(t) representing the
camera wearer, and the verb node vverb(t), describing the
action performed by the camera wearer at time t. Each
graph G(t) also contains a set of object nodes Vobj(t) en-
coding the objects involved in the actions. In this formula-
tion, the camera wearer’s hands will appear as object nodes.

Apart for the camera wear node, each other node is
associated to one or more attributes through a function
att. The verb node is associated to a verb class attribute:
att(vverb(t)) = verb. Noun nodes vi(t) are associated to
a noun class attribute noun and to three bounding box at-
tributes grounding the noun to the PRE(t), PNR(t) and
POST (t) frames associated to the action taking place at
time t: att(vi(t)) = (noun, boxPRE , boxPNR, boxPOST ).
Additionally, we provide the object segmentation masks
from the initial bounding box groundings (Fig. 2).

The edges in the graph describe the relationships be-
tween nodes. Relations between verb and object nodes can
be of a direct object kind (e.g., puts – dobj –package), or
a preposition (i.e., puts – in – fridge), while relationships
between object nodes are characterized by the prepositions
only (i.e., package –with – carrot). Objects vi(t) which are

Figure 2. An example of segmentation masks for the PNR frame
of the graph CW takes dough from the container with both hands,
from Fig.1

in a direct object relation with the verb node vverb(t) are
also referred to as “direct objects”, while all other objects
are referred to as “indirect objects”.

3. Ego4D-EASG Dataset

We build our EASG dataset, Ego4D-EASG, by annotating
a subset of 552 Ego4D [8] clips containing labels for the
State Change Object Detection benchmark (SCOD).We la-
beled an independent EASG Gi(t) for each clip Ci. Each
temporal realization of the graph, Gi(t) is seeded from the
annotation tuple ait = (ai,PRE

t , ai,PNR
t , ai,POST

t ).

3.1. Egocentric Action Scene Graph Annotation

The data annotation is performed in two stages: 1) the graph
annotation stage, and 2) the graph validation stage. In the
first stage we initialize the graph with the verb-noun anno-
tations from Ego4D dataset, and ask Amazon Mechanical
Turk workers to add relevant information about the actions
(new nodes, edges and groundings). In the second stage, we
aggregate the annotations from multiple workers and ask the
annotators to remove contradictions from data.

After the graphs are annotated, we perform temporal rec-
ollection: in this stage we reason globally on the dynamic
graph Gi(t), t = 1 . . . , T and re-assign node indices to en-
sure that object nodes representing the same object instance
are assigned the same index across time. To achieve this,
we leverage the EgoSTARK model introduced in the [24].

Finally, we perform the object segmentation using Seg-
ment Anything Model (SAM) [11].

3.2. Dataset Statistics and Comparison with Other
Scene Graph Datasets

Table 1 reports statistics on the proposed Ego4D-EASG
dataset and compares it with existing video scene graph
datasets. The proposed dataset is the only one designed
for long-form egocentric video understanding and it fea-
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Figure 3. Left-to-right, top-to-bottom: Distributions of clips across scenarios, object nodes, temporal lengths T of graphs G, verb nodes,
and relation categories (excluding action and direct object relations). Data is distributed across different scenarios related to egocentric
perception, long-tailed objects, verb distributions, and prepositions. The distribution of temporal length of graphs shows the long-form
nature of our annotations, with most graphs having a length of up to 50 timesteps.

Dataset Dynamic Egocentric Sequences Hours Avg. Len. (seconds) Avg. Graphs per Vid. Obj Cls Verb Cls Rel Cls
VidVRD [22] ✗ ✗ 1,000 3 11 3.9* 35 25** 132
VidOR [23] ✗ ✗ 10,000 99 35 8.8* action + 29.2* spatial 80 42 50
Action Genome [28] ✓ ✗ 10,000 82 30 5 35 - 25
PVSG [30] ✗ Partly (28%) 400 9 77 382 126 44 57
HOMAGE [18] ✗ paired ego-exo 1,752 25 3 3.8 86 453 29
Ego4D-EASG (Ours) ✓ ✓ 552 22.3 197 27.1 789 329 21

Table 1. Comparison with existing video scene graph datasets. Our Ego4D-EASG dataset is the only one explicitly designed for long-form
egocentric video understanding, featuring egocentric videos, dynamic graphs, an average sequence length of 3.1 minutes and an average
number of 27.1 graphs per sequence. *measured in object-relation-object triplets. **intransitive + transitive verb predicates.

Method

With Constraint No Constraint

Edge Cls SG Cls EASG Cls Edge Cls SG Cls EASG Cls

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

Random Guess 8.0 8.0 8.0 0.2 0.4 1.0 0.0 0.0 0.0 36.5 72.6 99.9 0.3 0.5 1.0 0.0 0.0 0.0
Baseline (Ours) 60.4 60.4 60.4 41.4 44.3 50.6 14.3 16.4 17.9 94.4 99.8 100 51.6 58.2 62.4 14.7 18.3 20.9

Table 2. Baseline results for three EASG generation tasks (i.e. Edge Cls, SG Cls, and EASG Cls) in terms of Recall@K.

tures 552 egocentric video sequences, 11.4 hours of video,
comprising an average labeled sequence length of 3.1 min-
utes, T = 27.1 graphs per video in average, 789 object
classes, 329 verb classes, and 21 relation classes. Com-
pared to previous datasets, ours is the only one that includes
verb nodes explicitly encoding actions. All the object and
hand nodes are manually annotated with 103,027 bounding
boxes. Figure 3 reports statistics on the distribution of sce-
narios, nouns, verbs, relations, and temporal graph lengths.

4. Egocentric Action Scene Graphs Generation

Task Definition Unlike standard scene graph generation,
EASG generation aims to predict the action verbs as well as
objects and their relationships. We define three EASG gen-
eration tasks as follows: (1) Edge classification (Edge Cls)
is to predict verb-object and object-object relationships
given visual features, the ground-truth action verb and ob-
ject classes, (2) Scene Graph Classification (SG Cls) is
to predict both the object classes and the edge relation-
ships given visual features and the ground-truth action
verb, and (3) Egocentric Action Scene Graph Classification

We measure the length of each sequence from the timestamp of the
G(1) : PRE frame to the timestamp of the G(T ) : POST frame.
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(EASG Cls) is to predict all these three components, which
encompass action verbs, objects, and edge relationships.
We follow [9] and report results for predicate (Edge Cls)
and scene graph (SG Cls) classification, and extend it with
EASG Cls to evaluate time-evolving graphs.
Experimental Setting We design a baseline for the novel
EASG generation task consisting of task-specific fully-
connected layers working on top of pre-extracted visual fea-
tures. For Edge Cls, we use a single-layer model to predict
the edge relation from the clip-level features and ROIAlign
features of each object bounding box. For the clip-level
features, we take the average of SlowFast [7] features (pre-
extracted and provided within the Ego4D dataset [8]) for the
whole clip spanning from PRE to POST frames. We extract
the ROIAlign features using the Faster-RCNN [19] pre-
trained for the short-term action anticipation benchmark [8].
For SG Cls, we add an additional fully-connected layer to
predict the object classes from the ROIAlign features. For
EASG Cls, we add another additional layer to predict the
action verb from the clip-level features.
Results We report the results for all tasks and setups in Ta-
ble 2, similar to scene graph generation datasets like Action
Genome, which evaluate using Recall@K, with K=10, 20,
50. Baseline results are compared with random guess. We
can observe that the scores of EASG Cls are significantly
lower than other results, indicating that action verbs intro-
duce another layer of difficulty to EASG understanding.

5. Downstream long-from video understanding
tasks with Egocentric Action Scene Graphs

In this section, we report experiments showing the poten-
tial of the EASG representation in the downstream tasks
of action anticipation and activity summarization. Follow-
ing recent results showing the flexibility of Large Language
Models (LLMs) as symbolic reasoning machines [14], we
perform these experiments with open-source LLMs from
the LLaMa-2 series [25]. We show that EASG offers an
expressive way of modeling long-form activities, in com-
parison with the gold-standard verb-noun action encoding,
extensively adopted in previous work [3, 8].

Experimental Setting We prompt the model to pre-
dict the future action from a sequence of length T ∈
{5, 20}. We compare two types of representations - EASG
and sequences of verb-noun pairs. The input sequence of
graphs can be represented as sEASG = [G(t0), G(t0 +
1), ..., G(t0+T−1)], with t0+T−1 ≥ 20. Each graph G(t)
is represented as a string of triplets, where each triplet en-
capsulates the relationship between nodes (e.g., CW - verb
- wash; wash - direct object - car; wash - with - sponge).
As an output, we request to provide the future unobserved
scene graph G(t + T ) in the same format. From the pre-
dicted graph, we extract the pair of verb and direct object
node classes for evaluation. Given the uncertainty in fore-

Verb Noun Action

Seq. length T Avg. duration Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

V-N 5 21s 1.52 3.14 41.55 51.20 1.02 2.04
EASG 5 21s 2.11 7.23 42.18 53.08 2.11 4.86
V-N 20 82s 3.32 7.07 40.12 52.94 2.23 4.47
EASG 20 82s 5.32 14.81 41.27 54.33 3.45 8.20

Improvement +2.0 +7.58 +0.63 +1.25 +1.22 +3.34

Table 3. Performance Comparison for the Action anticipation task.

CIDEr ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

V-N 9.42 31.5 10.3 29.7 35.7 18.6 7.6 3.9 26.09
EASG 13.79 33.3 10.7 31.4 37.3 19.0 7.8 4.2 26.30
Narrations 19.99 37.7 14.0 34.4 42.0 24.0 11.7 6.7 29.43

Table 4. Results of activity summarization with EASGs and verb-
noun representations.

casting future events, we prompt the LLM to output up to
N = 5 predictions, a standard practice in anticipation [2, 8].
We evaluate results using top-k accuracy, with k ∈ {1, 5},
reported for verb, noun, and actions.

In the similar fashion we tackle long-form activity sum-
marization task. In these experiments we take the Ego4D
clip summaries as ground-truth, and evaluate the produced
summaries using the CIDEr [26] metric, adopted in the
image captioning literature, and standard metrics for NLG
(ROUGE [13], BLEU [15], METEOR [1]).
Results Table 3 reports the results of these experiments.
Best results are always achieved by EASG-based represen-
tations. As can be noted, even short EASG sequences (T =
5) tend to outperform long V-N sequences (T = 20), high-
lighting the higher representation power of EASG, when
compared to standard verb-noun representations. EASG
representations achieve the best results for long sequences
(T = 20). EASGs bring overall significant improvements
of up to +7.58 with respect to the best verb-noun based pre-
diction across the different metrics.

Results for summarization, reported in Table 4 indicate
strong improvement in CIDEr score over svn inputs, show-
ing that models which process EASG inputs capturing de-
tailed object-action relationships, will generate more spe-
cific, informative sentences that align well with reference
descriptions.

6. Conclusion
Our paper reports four key contributions: Egocentric Action
Scene Graphs (EASG) as a novel representation for under-
standing long-form egocentric videos; A procedure for the
collection of such graphs and extended the Ego4D dataset
with manually annotated EASG labels: Initial baseline re-
sults for EASG generation; The validation of the effective-
ness of the EASG representation in two downstream tasks,
aimed at long-form egocentric video understanding. We be-
lieve that these contributions mark a step forward in long-
form egocentric video understanding.
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