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Abstract

Existing monocular hand reconstruction methods typi-
cally adopt the weak perspective camera model to simulate
the hand motion in the camera frustum. As a result, they fail
to recover 3D global trajectory and yield incorrect depth
reasoning when the input is recorded by dynamic cameras,
especially in egocentric hand interaction videos. In this pa-
per, we make the first attempt to reconstruct 4D global hand
motion from monocular videos recorded with dynamic cam-
eras in the wild. Furthermore, To model accurate interact-
ing 3D hands, we leverage a learned data-driven hand mo-
tion prior to explicitly refine the plausible and complex 3D
interaction. Our method significantly outperforms the state-
of-the-art approaches both qualitatively and quantitatively
on challenging datasets with dynamic cameras.

1. Introduction

Existing monocular hand reconstruction methods [1, 2, 6,
8, 9, 12, 13, 21, 23–25] typically adopt the weak perspec-
tive camera model to simulate the global hand motion. As
shown in Fig. 1, existing hand reconstruction works es-
timate hand poses in the camera coordinate system frus-
tum or even root-relative coordinate system [12, 13], while
the interaction with objects in the 3D virtual world will
require estimating 4D hand motions in global coordinates
consistent with the accurate localization of the objects in
the scene. In contrast to all the existing works, we present
an optimization-based pipeline Dyn-HaMR, which aims to
reconstruct 4D global two hands from complex scenes with
even dynamic cameras while modeling better interaction
with a learned hand motion prior through an optimization
routine, without the need for a sensor, multi-view camera
setup, or any prior knowledge. To fully showcase the supe-
riority of our method, we conduct extensive experiments on
the captured in-the-wild dynamic interaction videos as well
as existing benchmarks. Our method outperforms existing
state-of-the-art approaches significantly in terms of the 4D
global motion recovery.
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Figure 1. Dynamic camera problem. The green and red arrows
represent the direction of the hand motion. Dyn-HaMR(Ours) can
recover the 4D global hand motion in the real world whilst state-
of-the-art 3D hand reconstruction methods [9, 14, 21] fail to do so.

2. Method
We consider an input video V = {I1, · · · , IT } with T
frames containing two, possibly interacting hands under-
going arbitrary 6D camera motion. We aim to recover
the global trajectory of the hands in the world coordi-
nate system. As illustrated in Fig. 2, our three-stage
pipeline, inspired by recent dynamic human motion percep-
tion works [16, 20], includes: (I) Using state-of-the-art hand
pose estimation [14, 19, 21] and motion priors [3] to initial-
ize hand states per frame in the camera coordinates. (II) Ap-
plying an advanced SLAM system for initial global motion.
(III) Refining hand displacements, interactions, penetration,
and biomechanical constraints using learned motion priors.

Representing hand motion At time t, we parameter-
ize hand pose and shape using the MANO model [15] as
qh
t = θh

t ,β
h
t ,ϕ

h
t , τ

h
t , where θh

t ∈ R3×15 is the local
hand pose with 15 joints, βh

t ∈ R10 are shape coefficients,
and (ϕh

t , τ
h
t ) denote the global wrist pose (root orientation

ϕh
t ∈ R3 and translation τht ∈ R3). The handedness is

denoted by h ∈ [l, r]. We assume βh remains constant
throughout the sequence. We use cqh

t and wqh
t for cam-

era and world coordinates, respectively, and cQh and wQh

for trajectories. The MANO parameters qh
t recover hand

mesh vertices V ∈ R3×778 and joints J ∈ R3×21 through
differentiable functions M(Jh

t ,β
h,ϕh

t , τ
h
t ).
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Figure 2. Overview of our method. We design a three-stage optimization pipeline to recover the 4D global hand motion from in-the-wild
videos even recorded with dynamic cameras.

2.1. Stage I: Hierarchical Initialization

In stage I, we initialize the motion state qh
t by the effi-

cient two-hand tracking system with a hierarchical fusion
scheme, which is followed by the generative infilling.

Motion infilling and temporal consistency Typical
single-frame interacting hand reconstruction methods nat-
urally lack temporal coherence and there could be missed
detection due to the frequent occlusion during interactions,
making the trajectory cQh incomplete. We address both
problems by employing the hand motion prior [3] as a gen-
erative, smooth motion hallucinator. To do so, for both
hands, we optimize for the latent code zh in HMP so as
to fit the frames where detections are present. We initialize
this optimizer by using a canonical slerp interpolation in the
pose space, finally leading to the initial 4D hand trajectory
in the camera coordinate system cQh.

Initialization of 2D observations we incorporate ViT-
Pose [19] and MediaPipe [11] with the reprojection of [14]
and subsequently feed through a confidence-guided filter.
To fill in the missed 2D keypoint detections, we repro-
ject the 3D keypoints cJh

t from cqh
t onto 2D by weak-

perspective projection as Ĵh
t ∈ R3×21.

2.2. Stage II: 4D Global Motion Optimization

Given the trajectory in the camera coordinate system cQ (by
Sec. 2.1), our key idea here is to compute the relative cam-
era motion with a data-driven SLAM system, DPVO [18],
and to estimate the transform Ct = {Rt,Tt} at each
timestep t from the camera coordinate system to the world
coordinate system. Then, the composition of hand motion
cQh and camera motion, i.e., wqh

t = Ct ⊙ cqh
t reveals the

global motion. We also optimize a world scale factor ω
to explicitly model the relative scale between the displace-
ments of the camera and hand motion inspired by [20].

Optimization variables During optimization, we take as
input the initialized 2D keypoints sequence Ĵh

t , the 3D mo-
tion state sequence cQh in the camera coordinate system,
and the world-to-camera transformation Ct estimated by
the SLAM system, and subsequently propose to jointly op-
timizes the global trajectories, orientation, and local hand
poses and the camera extrinsics Ct to match the 2D obser-
vations. Specifically, we initialize wQ as follows:

wϕh
t = R−1

t ·cϕh
t and wτht = R−1

t ·cτht −ωR−1
t ·Tt,

(1)
while wθh

t = cθh
t = θh

t and wβh
t = cβh

t = βh remain the
same. The initial world-camera scale factor is set as ω = 1.
With the initialized motion state wqh

t , the 3D mesh joints at
each timestep, wJh

t , can be extracted as:

wJh
t = L ·W (H(Jh

t ,β
h), P (βh),S) + wτht (2)

Optimization scheme We optimize the trajectory in the
world frame by minimizing the following objectives:

E(wqh, ω,Rt,Tt) = λ2dL2d + λsLsmooth + λcamLcam

+ λJLJ + λβLβ.

(3)

The first term aligns wQh with the 2D observations:

L2d =

T∑
t=0

∑
h∈{l,r}

ρ
(
Ch

t

(
J̃h
t − Ĵh

t

))
(4)

Here, J̃h
t = Π(wJh

t ,Rt, ω,Tt,K) is the 2D reprojection of
current 3D keypoints and Π is the perspective camera pro-
jection with intrinsic K. Ch

t is a mask of the joint visibility
ρ(·) is the Geman-McClure robust function [5]. Essentially,
the motions of the two hands will further constrain the cam-
era scale factor ω and improve the performance of complex
hand interaction videos. To further eliminate implausible

2



poses, we leverage the temporal information and introduce
regularization terms:

Lsmooth =

T∑
t=0

∑
h∈{l,r}

∥wJh
t+1 −w Jh

t ∥2

+

T∑
t=0

∑
h∈{l,r}

dθ
(
θh
t+1 ⊖ θh

t

)2
, (5)

Lcam =

T∑
t=0

dR(Rt+1,Rt)
2 +

T∑
t=0

∥Tt+1 − Tt∥2. (6)

where rotational terms are geodesic distances. For reason-
able regularization terms, to reduce the jittery poses, we em-
ploy standard pose LJ =

∑T
t=0

∑
h∈{l,r} ∥Jh

t ∥2 and shape
prior Lβ(β

h) =
∑

h∈{l,r} ∥βh∥2 term [15].

2.3. Stage III: Motion Prior Optimization

After obtaining global hand motion in the world coordinate
system from previous stages. In Stage III, we introduce an
interacting hand motion prior optimization module to better
model the interactions with plausibility, which also helps to
determine the contribution of camera motion from the hand
motion with a well-learned scale factor ω.

Optimization variables For the latent optimization with
motion prior, we omit the decoded global orientation as it
is inherently less constrained and less correlated to the local
pose compared to the body pose. Specifically, we initialize
the latent code zh from the pre-trained encoder. Our objec-
tive is to perform the optimization over the latent code zh,
global motion state wQh and the scale factor ω during the
optimization by minimizing the following objectives.

EII(
wQh,ω,Rt,Tt) = Lprior + Lpen + Lbio + λ2dL2d

+ λsLsmooth + λcamLcam + λJLJ + λβLβ.

(7)

Prior loss (Lprior) We define Lprior = λzLz + λϕLϕ +
λτLτ , where Lz ensures that the motion falls in the motion
prior by penalizing the negative log-likelihood:

Lz =
∑

h∈{l,r}

T∑
t=0

− logN (zh;µh({Jh
t }), σh({Jh

t })).

(8)
The two other terms ensure an as jitter-free as possible tra-
jectory by encouraging global consistency over the global
orientation Φh and translation wτ :

Lϕ =

T∑
t=0

dϕ(
wϕt, ˆwϕt) and Lτ =

T∑
t=0

∥wτht − ˆwτht ∥2.

(9)

Biomechanical loss (Lbio) While the hand prior helps
correcting certain implausible configurations, it is still nec-
essary to explictly the hand pose for improved motion qual-
ity. Hence, we further add biomechanical constraints [17]
to our objective function, which consists of three terms:
Lbio = λpalmLpalm+λjaLja+λblLbl. For ith finger bone,
each of the terms is defined as:

Lja =
∑
i

dH,α(α
i
1:T ,H

i), (10)

Lbl =
∑
i

I(∥bi
1:T ∥2; bimin, b

i
max), (11)

Lpalm =
∑
i

I(∥ci1:T ∥2; cimin, c
i
max)

+
∑
i

I(∥di
1:T ∥2; dimin, d

i
max), (12)

where Lbl is for bone length, Lpalm is for palmar re-
gion optimization, and Lja is for joint angle priors. Lja

constrains the sequence of joint angles for the i-th finger
bone αi

1:T = (αf
1:T ,α

a
1:T ) by approximating the convex

hull on (αf
1:T ,α

a
1:T ) plane with the point set Hi, and the

objective is to minimize the distance dα,H between them. I
is the interval loss penalizing the outliers, and bi is the bone
length of i-th bone. Finally,Lpalm penalizes the outliers
of curvature range (cimin, c

i
max) and angular distance range

(dimin, d
i
max) to constraint for the 4 root bones of palm.

Penetration loss (Lpen) The final loss enhances the re-
construction quality of challenging hand interactions by in-
corporating a contact and penetration penalty term:

Lpen =

T∑
t=0

 ∑
vr
t∈Vr

t

min
vl
t∈Vl

t

∥vl
t − vr

t ∥2

+
∑

vl
t∈Vl

t

min
vr
t∈Vr

t

∥vl
t − vr

t ∥2
 (13)

where Vl
t and Vr

t are the intersected vertices of the pre-
dicted left hand and right hand, respectively.

3. Experiments
Implementation details We use the L-BFGS algorithm
for our three-stage optimization with learning rate lr = 1.
For Stage 2, we use λ2d =, λ2d = 0.001, λsmooth =
10, λcam =, λθ = 0.04, λβ = 0.05. For stage 3, we use
λz = 200, λϕ = 2, λγ = 10, λpen = 10, λβ = 0.05, λja =
1, λpalm = 1, λbl = 1.

Evaluation metrics Following [16, 20, 22], we split the
sequences into 100 frames per segment and align each se-
quence with ground truth using the first two frames or the
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Input video Ours HaMeR

Figure 3. Qualitative comparison with state-of-the-art method
HaMeR [14]. (a) is from H2O dataset [7], and (b)(c) are from
HOI4D dataset [10] and in-the-wild videos.

Method G-MPJPE (↓) GA-MPJPE (↓) MPJPE (↓) Acc Err (↓)
ACR [21] 105.6 86.7 47.5 14.2

IntagHand [9] 99.3 73.5 45.8 13.3
HaMeR [14] 91.5 69.5 30.6 9.13

Ours (w/o Stage III) 48.6 39.9 25.4 9.7
Ours 43.5 31.2 21.5 4.1

Table 1. Quantitative evaluation results for H2O dataset.

whole sequence. For the first group of the evaluation pro-
tocols, local pose and shape evaluation in camera coordi-
nate system, we report the commonly used Mean Per Joint
Position Error (MPJPE). We further report Acceleration
error (Accel, m/s2) after root alignment to measure the
smoothness between frames of the reconstructed motions,
which is computed as the difference between the magni-
tude of the acceleration vector at each joint. In terms of
global motion evaluation, the errors can accumulate over
time with dynamic cameras. We therefore follow prior arts
[16, 20, 22] to use a sliding window and split sequences
into smaller segments of 100 frames and align each out-
put segment with the ground-truth data using the first two
frames (G-MPJPE) or the entire segment (GA-MPJPE) in
the world coordinate system.

Datasets We employ egocentric hand motion datasets in
our experiments following the official split to conduct our
experiments: 1) H2O [7], 2) HOI4D [10], 3) FPHA [4].

3.1. Global Motion Evaluation

Quantitative results We report results following the of-
ficial test split for the egocentric dynamic camera views
as shown in Tab. 1 and supplementary materials. It can
be observed that our method significantly outperforms the
state-of-the-art methods [9, 14, 21] in terms of G-MPJPE
and GA-MPJPE, which demonstrates the superiority of our
global 4D hand motion recovery. The results of [9, 14, 21]

are obtained from running the official checkpoints.

Qualitative results In Fig. 3, we present detailed compar-
isons with previous state-of-the-art methods, where we can
observe that our method has significant improvements on
real plausible motion trajectory with a more plausible depth
reasoning between two hands. Our method is the only one
that can recover the authentic global trajectories and keep
them consistent the input videos with dynamic cameras,
whilst other methods suffer from the ambiguity of depth and
absence of camera pose. We also provide more qualitative
results in the video in supplemental materials and on the
project page. As there is not yet an interacting hand dataset
with dynamic cameras, we provide in-the-wild results.

3.2. Hand Reconstruction Evaluation

To evaluate the per-frame hand pose estimation, we conduct
a comprehensive comparison of our method and the exist-
ing state-of-the-art hand reconstruction methods: HaMeR
[14], IntagHand [9] and ACR [21]. In Tab. 1, we compare
the reconstruction accuracy of our baseline (w/o stage III)
with the state-of-the-art methods on H2O [7] and FPHA [4]
dataset with MPJPE. Furthermore, we evaluate the inter-
frame smoothness using the acceleration error compared to
the existing works, where we can observe significant im-
provements with lower error in our pipeline. Due to the
page limit. Please find more details in supplementary mate-
rials and further comparison on FPHA [4] dataset.

3.3. Ablation Study

Method G-MPJPE (↓) GA-MPJPE (↓) MPJPE (↓) Acc Err (↓)
Ours (w/o Stage III) 48.6 39.9 25.4 9.7

Ours (w/o bio. constraints) 47.3 40.2 24.8 4.3
Ours (w/o pen. constraints) 44.1 32.5 21.9 4.0

Ours 43.5 31.2 21.5 4.1

Table 2. Ablation study on H2O dataset.

To fully assess the effectiveness of our proposed method,
we perform further ablation studies on the pipeline design
to analyze the contribution of each component. In particu-
lar, we investigate the effectiveness of the key components:
(i) the Lbio and (ii) Lpen and (iii) the interacting hand mo-
tion prior module in Stage III. It can be seen from Tab. 2
that incorporating Stage III can boost the performance by
a considerable margin as it provides a well-learned motion
prior information for the final stage optimization and yields
more plausible and smoother 4D trajectory reconstructions.

4. Conclusion
We introduced Dyn-HaMR, which achieves the state-of-
the-art 4D global motion for interacting hands from com-
plex scenarios even with dynamic cameras, leveraging the
SLAM systems in conjunction with the hand priors.
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