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Abstract

In this study, we investigate the effectiveness of synthetic
data in enhancing egocentric hand-object interaction de-
tection. Via extensive experiments and comparative anal-
yses on three egocentric datasets, VISOR, EgoHOS, and
ENIGMA-51, our findings reveal how to exploit synthetic
data for the HOI detection task when real labeled data are
scarce or unavailable. Specifically, by leveraging only 10%
of real labeled data, we achieve improvements in Overall
AP compared to baselines trained exclusively on real data
of: +5.67% on EPIC-KITCHENS VISOR, +8.24% on Ego-
HOS, and +11.69% on ENIGMA-51. Our analysis is sup-
ported by a novel data generation pipeline and the newly
introduced HOI-Synth benchmark which augments exist-
ing datasets with synthetic images of hand-object interac-
tions automatically labeled with hand-object contact states,
bounding boxes, and pixel-wise segmentation masks. Data,
code, and data generation tools to support future research
are released at: https://fpv-iplab.github.io/
HOI-Synth/.

1. Introduction
The use of synthetic data to reduce the dependence of pre-
diction algorithms on labeled real data has been previously
explored in different domains, including embodied AI [7]
and autonomous driving [2]. However, the exploitation of
synthetic data is currently under-explored in egocentric vi-
sion in general and hand-object interaction detection in par-
ticular, due to the challenges associated to generating accu-
rate and photorealistic images of hand-object interactions,
which requires the modeling of hands, objects and physical
contact. While the use of synthetic data holds promise for
reducing reliance on labeled real data in egocentric hand-
object interaction detection, many questions still remain
unanswered: 1) Is there a gap between real and synthetic
data? 2) Where does it originate? 3) How can it be re-
duced? 4) Can synthetic data entirely replace real data? 5)
Can synthetic data enable training in the presence of unla-
beled real data? 6) Can synthetic data increase efficiency

when few real data are labeled? 7) Is in-domain synthetic
data, aligned to the target real domain in terms of objects
and environment, beneficial?

With the goal of advancing research in egocentric hand-
object interaction detection and synthetic-to-real domain
adaptation for egocentric vision, in this paper, we propose
a systematic investigation to answer the questions above.
To support our investigation, we propose a novel pipeline
and develop a simulator able to generate synthetic images of
realistic hand-object interactions in multiple environments,
which are automatically labeled for the considered hand-
object detection task (Figure 1-left). We generate three sets
of synthetic data, paired with two popular domain-generic
hand-object detection benchmarks, EPIC-KITCHENS VI-
SOR [1], and EgoHOS [10], and a domain-specific dataset,
ENIGMA-51 [5]. We hence study three different domain
adaptation tasks: unsupervised domain adaptation, where
models are trained with synthetic data and unlabeled real
data, semi-supervised domain adaptation, where models are
trained with synthetic data, unlabeled real data, and few
labeled real data, and fully supervised domain adaptation,
where models are trained with labeled synthetic and real
data (Figure 1-right). Collectively, the real and generated
egocentric data define a new benchmark dataset, which we
term HOI-Synth.

We leverage HOI-Synth to benchmark different ap-
proaches to domain adaptation for hand-object interaction
detection based on previous literature on domain adapta-
tion for object detection and hand-object interaction detec-
tion in multiple settings. Our analysis provides several in-
sights into the advantages of using synthetic data for ego-
centric hand-object interaction detection: A) Despite ad-
vancements, there’s still a gap between synthetic and real
data, attributed to limitations in realism, grasping accuracy,
and diversity of environments and objects; B) Domain adap-
tation reduces this gap: unsupervised domain adaptation
yields improvements of ∼ 20 − 35% AP; semi-supervised
adaptation approaches achieve the performance of fully su-
pervised methods on real data using only ∼ 10%− 25% of
the labels; fully-supervised adaptation sees a ∼ 1% − 4%
AP boost. C) While most of the improvements come from
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Figure 1. We study the impact of synthetic data in egocentric hand-object interaction detection. We generate and automatically label large
sets of synthetic data (left) and study a set of domain adaptation scenarios in which models are trained on both synthetic and real unlabeled
data, plus different amounts of labeled real data (right).

synthetic sets in the order of 10, 000 images, methods still
obtain benefits as the amount of synthetic data is increased
up to 30, 000; D) In-domain synthetic data significantly
enhances unsupervised domain adaptation (∼ +20% AP),
while its advantage in semi and fully supervised adaptation
seems limited.

2. The HOI-Synth Benchmark

HOI-Synth Data Generation Pipeline and Simulator
Figure 2 shows a scheme of the proposed data generation
pipeline, which is composed of three main steps. Our
pipeline relies on state-of-the-art datasets and components
to enable an accurate generation of egocentric images of
hand-object interactions [6, 8, 9]. We first select a random
hand-object grasp from the DexGraspNet dataset [9],
which is fit to a randomly generated human model and
integrated with the appropriate object mesh specified in
the hand-object grasp [8] (Figure 2-a). We then select a
random environment from the HM3D dataset [6] and place
the human-object model in the environment (Figure 2-b).
We finally place a virtual camera at human eye level to
capture the scene from the first-person point of view. For
each generated interaction, the simulator annotates the
bounding boxes and the segmentation masks of the hands
and interacted objects, the hand contact state, as well as
the hand-object relations (see Figure 2-c). We developed
the pipeline in the Unity3D framework and implemented a
hand-object interaction simulator, which will support future
research on synthetic data generation for egocentric vision.

Datasets The HOI-Synth benchmark extends three estab-
lished datasets of egocentric images designed to study hand-
object interaction detection, EPIC-KITCHENS VISOR [1],
EgoHOS [10], and ENIGMA-51 [5], with automatically la-
beled synthetic data obtained through the proposed gen-
eration pipeline. Table 1 reports statistics of the training
section of the HOI-Synth benchmark dataset, including the

Table 1. Statistics of the training sets considered in our HOI-Synth
benchmark.

Dataset Images Hands Objects HOI
VISOR [1] 32,857 52,906 42,785 42,787
Synthetic 30,259 60,098 45,219 45,353
EgoHOS [10] 8,107 15,015 11,393 13,659
Synthetic 8,107 16,101 12,170 12,129
ENIGMA-51 [5] 3,479 5,075 4,343 4,344
Synthetic-In-Domain 16,773 25,444 16,637 16,773
Synthetic-out-domain 20,321 40,135 27,499 27,370

number of real and synthetic images, annotated hands, ob-
jects and HOIs. We use the official validation and test sets
of the respective datasets for evaluation.

3. Experimental Analysis and Results
We consider six different approaches to hand-object seg-
mentation based on VISOR HOS [1]: (1) Synthetic-Only,
(2) Unsupervised Domain Adaptation (UDA), (3) Real-
Only, (4) Synthetic + Real (5) Semi-Supervised Domain
Adaptation (SSDA), and (6) Fully-Supervised Domain
Adaptation (FSDA).

Evaluation measures Following [1], we evaluate per-
formance using COCO Mask AP [4]. In particular, we
adopted the Hand + Object (Overall) AP which assesses
the correctness of the predicted hands and object bounding
boxes of hands, the hand-state (contact vs. no contact) and
the offset vector representing the relation between the hand
and the active object. We also break down performance
using Mask APs measures evaluating specific aspects of
the predictions: Hand (H), Hand + Side (H+S), Hand +
Contact (H+C), and Object (O).

Results on VISOR Table 2 shows the results on the
validation set of EPIC-KITCHENS VISOR [1].
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Figure 2. The proposed data generation pipeline. (a) An object-grasp pair is selected from DexGraspNet [9] and integrated with a
randomly generated human model. (b) The human + object model is placed in an environment randomly selected from the Habitat-
Matterport 3D dataset [6]. (c) Egocentric data of hand-object interactions is generated and automatically labeled.

Table 2. Results on the EPIC-KITCHENS VISOR validation
set considering different real data settings available in training.
Yellow rows indicate baseline models in each configuration,
while green rows highlight models trained with synthetic and
real data. In each group, the best results are in bold, while the
best results among the models trained with synthetic and real data
are underlined. Overall enhancements are shown in blue, indicat-
ing improvements of the models trained with synthetic and real
data over the baseline.

a) Unsupervised Setting
% Real Labeled Data Approach Overall H H+S H+C O

0% Synthetic-Only 09.88 28.41 24.89 08.64 01.23
UDA 33.33 80.16 65.98 33.47 8.35

Absolute Improvement +23.45 +51.75 +41.09 +24.83 +7.12

b) Semi-supervised Setting
% Real Labeled Data Approach Overall H H+S H+C O

10%
(3,286 images)

Real-Only 38.55 87.45 83.27 51.98 19.47
Synthetic+Real 37.62 86.39 82.85 52.25 23.03

SSDA 44.22 89.05 80.77 46.83 20.41
Absolute Improvement +5.67 +1.60 −0.42 +0.27 +3.56

25%
(8,215 images)

Real-Only 37.90 90.14 85.66 53.99 17.85
Synthetic+Real 38.19 89.98 84.67 55.88 18.49

SSDA 45.55 90.37 84.42 52.59 22.15
Absolute Improvement +7.65 +0.23 −0.99 +1.89 +4.30

50%
(16,429 images)

Real-Only 38.15 91.16 86.05 52.28 17.92
Synthetic+Real 43.52 91.34 85.85 54.09 19.06

SSDA 46.47 90.94 85.73 58.02 23.49
Absolute Improvement +8.32 +0.18 −0.20 +5.74 +5.57

c) Fully-supervised Setting
% Real Labeled Data Approach Overall H H+S H+C O

100%
(32,857 images)

Real-Only 45.33 92.25 88.54 59.24 24.23
Synthetic+Real 44.52 91.45 88.94 56.55 27.77

FSDA 46.48 91.83 87.65 57.63 24.03
Absolute Improvement +1.15 −0.42 +0.40 −1.61 +3.54

Results on EgoHOS Table 3 reports the results on the test
set of EgoHOS [10].

Results on ENIGMA-51 Table 4 reports the results on the
test set of ENIGMA-51 [5]. In this case, we also compare
performance when in-domain and out-domain synthetic
data are used.

The full discussion of the results is available in the complete
version of the paper [3] at the following link: https://

Table 3. Results on the EgoHOS [10] test set.

a) Unsupervised Setting
% Real Labeled Data Approach Overall H H+S H+C O

0% Synthetic-Only 07.16 18.25 15.93 05.33 01.24
UDA 28.16 70.30 59.21 20.84 09.65

Absolute Improvement +21.00 +52.05 +43.28 +15.51 +8.41

b) Semi-supervised Setting
% Real Labeled Data Approach Overall H H+S H+C O

10%
(857 images)

Real-Only 28.44 76.28 68.92 35.84 16.59
Synthetic+Real 28.74 77.15 71.64 39.25 17.33

SSDA 36.68 83.25 73.72 47.20 22.40
Absolute Improvement +8.24 +6.97 +4.80 +11.36 +5.81

25%
(2,026 images)

Real-Only 33.73 78.94 70.62 41.67 21.83
Synthetic+Real 33.78 79.60 71.61 46.11 19.87

SSDA 37.16 83.79 74.28 49.00 23.82
Absolute Improvement +3.43 +4.85 +3.66 +7.33 +1.99

50%
(4,379 images)

Real-Only 36.30 81.82 73.63 47.27 25.73
Synthetic+Real 34.30 82.54 74.03 47.92 23.47

SSDA 39.85 85.17 76.80 52.58 26.90
Absolute Improvement +3.55 +3.97 +3.17 +5.31 +1.17

c) Fully-supervised Setting
% Real Labeled Data Approach Overall H H+S H+C O

100%
(8,758 images)

Real-Only 36.16 84.39 76.24 51.81 26.46
Synthetic+Real 34.68 84.56 71.56 49.72 23.16

FSDA 39.61 85.58 76.80 51.99 27.05
Absolute Improvement +3.45 +1.19 +0.56 +0.18 +0.59

arxiv.org/abs/2312.02672.

4. Discussion and Conclusion
With the proposed analysis we aimed to address several
questions.
Is there a gap between synthetic and real data? Where does
it originate? How can it be reduced? Despite progress in
realistic data generation, a gap remains between synthetic
and real data. Our analysis offers insights into the extent
of such gap, which is in the order of 30% − 40% depend-
ing on the dataset. In the context of VISOR, the estimated
gap (35.45%) is narrowed by unsupervised domain adapta-
tion to 12.00% and further shrunk to 1.11% adopting semi-
supervised domain adaptation strategies. Similar considera-
tions can be made for the other datasets. We suggest this gap
is caused by the photo-realism of generated synthetic data,
the diversity of context-aware characteristics (as shown by
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Table 4. Results on the ENIGMA-51 [5] test set.

a) Unsupervised Setting
% Real Labeled Data Approach In-domain Overall H H+S H+C O

0%

Synthetic-Only 00.21 01.07 00.11 00.03 00.99
Synthetic-Only ✓ 12.85 56.05 35.14 15.24 4.79

UDA 6.87 42.81 14.52 7.97 3.29
UDA ✓ 34.78 78.83 70.91 28.14 25.84

Absolute Improvement +21.93 +22.78 +35.77 +12.90 +21.05

b) Semi-supervised Setting
% Real Labeled Data Approach In-domain Overall H H+S H+C O

10%
(347 images)

Real-Only ✓ 45.39 81.25 76.22 37.96 39.53
SSDA 57.08 85.40 78.62 43.56 46.97
SSDA ✓ 56.69 84.58 78.42 41.17 46.50

Absolute Improvement +11.69 +4.15 +2.40 +5.60 +7.44

25%
(870 images)

Real-Only ✓ 51.83 82.95 78.70 43.52 45.25
SSDA 58.17 84.99 80.41 46.31 49.34
SSDA ✓ 59.48 84.85 80.30 44.24 49.37

Absolute Improvement +7.65 +2.04 +1.71 +2.79 +4.12

50%
(1,739 images)

Real-Only ✓ 57.62 84.65 80.43 47.41 48.79
SSDA 63.25 85.67 82.00 52.20 52.56
SSDA ✓ 61.93 85.12 82.01 48.96 51.94

Absolute Improvement +5.63 +1.02 +1.58 +4.79 +3.77

c) Fully-supervised Setting
% Real Labeled Data Approach In-domain Overall H H+S H+C O

100%
(3,479 images)

Real-Only ✓ 63.84 85.01 81.05 52.32 51.35
FSDA 64.41 85.94 82.91 54.13 52.50
FSDA ✓ 64.20 85.37 82.45 51.60 53.30

Absolute Improvement +0.57 +0.93 +1.86 +1.81 +1.95

results with in/out-domain synthetic data) and hand-object
interactions.
Can synthetic data entirely replace real data? Our study
suggests that synthetic data cannot yet entirely replace real
data for egocentric hand-object interaction detection, with
synthetic-only baselines achieving poor results in all sce-
narios.
Can synthetic data enable training in the presence of un-
labeled real data? While synthetic data cannot entirely re-
place real data, we show that it greatly improves models’
performance in the presence of unlabeled real data. Indeed,
significant gains are obtained by UDA across all scenarios,
when compared to a synthetic-only baseline, while the gap
with respect to fully supervised baselines is narrowed.
Can synthetic data increase efficiency when few real data
are labeled? When different amounts of real labeled data
are exploited together with synthetic data, SSDA and FSDA
models obtain improvements in Overall AP over baselines
trained on real data only in the considered benchmark. No-
tably, the performance gap diminishes as the quantity of real
data increases: from +23.45% (0% of real data) to +1.15%
(100% of real data) in VISOR, from +21.00% (0% of real
data) to +3.45% (100% of real data) in EgoHOS and from
+21.93% (0% of real data) to +2.33% (100% of real data)
for ENIGMA-51. These results highlight the effectiveness
of using synthetic data when real labeled data are scarce.
What scale of synthetic data is needed Our findings reveal
that models benefit from large quantities of synthetic data.
For instance, in the context of VISOR, a plateau is reached
when 22K-30K synthetic images are included for training.
Is in-domain synthetic data beneficial? Our analysis shows
that in-domain data is highly beneficial in unsupervised set-

tings, where it helps narrow down the domain gap. For in-
stance, in the ENIGMA-51 dataset, using in-domain syn-
thetic data only allows to obtain an overall AP of 12.85,
about +10% with respect to out-domain data. With UDA,
performance jumps to 34.78%, a major increase. With few
real labeled data, choice of in-domain data is less crucial,
with models achieving comparable performance, regardless
of the training data source.
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